Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study

2018 ◽  
Vol 177 ◽  
pp. 102-115 ◽  
Author(s):  
Yao Ding ◽  
Ke-Quan Yu ◽  
Jiang-tao Yu ◽  
Shi-lang Xu
2020 ◽  
Vol 858 ◽  
pp. 182-187
Author(s):  
Yu Dong Han ◽  
Zhen Bo Wang ◽  
Zi Jie Hong ◽  
Jian Ping Zuo ◽  
Chang Liu ◽  
...  

The brittleness and easiness to crack expose marine concrete to serious durability issues. Engineered Cementitious Composites (ECC), as a new generation of ultra high performance concrete, is expected to overcome the strain-softening properties of traditional concrete and realize function of crack-width control. In this paper, the sulfate erosion of ECC under drying-wetting cycles was modelled in laboratory test. And the compression test on cylinders after exposure to different erosion cycles was implemented to obtain the stress-strain properties. The results disclose that sulfate erosion imposes significant influence on both the nonlinear ascending and descending portions of the stress-strain properties of ECC. As the erosion period extended, ECC strength undergoes an obvious increase. And the descending section of the eroded ECC shows a significant stress drop, which is quite different from that before erosion. Additionally, a simple analytical model was proposed to provide satisfactory prediction of the stress-strain properties of ECC exposed to sulfate erosion.


2018 ◽  
Vol 158 ◽  
pp. 217-227 ◽  
Author(s):  
Ke-Quan Yu ◽  
Jiang-Tao Yu ◽  
Jian-Guo Dai ◽  
Zhou-Dao Lu ◽  
Surendra P. Shah

2021 ◽  
Author(s):  
Mohamed A. A. Sherir

This thesis investigates the influence of microsilica sand and local crushed sand, and different supplementary cementing materials on the mechanical properties of engineered cementitious composites (ECCs). ECC is a special type of high performance fiber reinforced cementitious composite with high ductility which exhibits strain-hardening and multiple-cracking behaviours in tension. The use of local aggregates in ECC production can lower its cost to mitigate the obstacles of wider commercial use. The experimental results showed that multiple-cracking behaviour was developed under fatigue loading for fly ash ECC (FA-ECC) mixtures, and the number of cracks was lower at both lower fatigue stress level and higher fatigue number of cycles. FA-ECC mixtures with silica sand exhibited higher deflection evolution under fatigue loading than FA-ECC mixtures with crushed sand. Based on the experimental results on link slab specimens, both FA-ECC mixtures with silica and crushed sands exhibited almost the same creep behaviour.


2020 ◽  
Vol 23 (14) ◽  
pp. 3075-3088
Author(s):  
Wei Hou ◽  
Guan Lin ◽  
Xiaomeng Li ◽  
Pandeng Zheng ◽  
Zixiong Guo

Extensive research has been conducted on the uniaxial tensile and compressive behavior of engineered cementitious composites. Despite the high tensile ductility and high toughness of engineered cementitious composites, transverse steel reinforcement is still necessary for high-performance structural members made of engineered cementitious composites. However, very limited research has been concerned with the compressive behavior of steel-confined engineered cementitious composites. This article presents the results of axial compression tests on a series of circular engineered cementitious composite columns confined with steel spirals. The test variables included the engineered cementitious composite compressive strength, the spiral pitch, and the spiral yield stress. The test results show that steel-confined engineered cementitious composites in the test columns exhibited a very ductile behavior; the steel spiral confinement contributed effectively to the enhancement of both strength and ductility of engineered cementitious composites. The test results were then interpreted by comparing them with the predictions from some existing models. It was found that the existing models previously developed for confined concrete failed to predict the compressive strength of steel-confined engineered cementitious composites with sufficient accuracy. New fitting equations for the compressive properties of steel-confined engineered cementitious composites were then obtained on the basis of the test results of this study as well as those from an existing study.


Sign in / Sign up

Export Citation Format

Share Document