Characteristic analysis of acoustic emission signals of masonry specimens under uniaxial compression test

2019 ◽  
Vol 196 ◽  
pp. 637-648 ◽  
Author(s):  
Yanqi Wu ◽  
Shengli Li ◽  
Dongwei Wang
2011 ◽  
Vol 261-263 ◽  
pp. 1393-1400
Author(s):  
Ji Liang Zhang ◽  
Chang Hong Li

Based on uniaxial compression test, the mechanical properties and acoustic emission characteristics of rock had been obtained, including the relationship between AE and time, AE and stress level, and so on, in the whole process of rock failure. Research shows AE rate of rock has the subparagraph features obviously. There are three obvious AE sections for the higher strength elastic-brittle rock: First section is compaction stage, corresponding stress is 10% of compressive strength of rock; Second section is crack-development stage, corresponding stress is 80% of compressive strength; Third section is rupture stage, corresponding stress is the compressive strength. Furthermore, AE signals for the rupture stage is strongest. The law is still correct in cycle loading conditions. However, the subparagraph phenomenon isn’t clear for elastic-plastic rock, and the AE peak is lagging behind the ultimate strength of rock, the AE signal in the decline stage of strength is the most intensive and strong. The lagging phenomenon is due to X-shear rupture model of soft rock. The significant stress concentration in cone tip between the two relative extrusion cones leads to local rock broken seriously. Then, many acoustic signals have been observed.


2010 ◽  
Vol 452-453 ◽  
pp. 193-196
Author(s):  
Kiyohito Yamamoto ◽  
Akira Kobayashi

In this study, specimens were prepared by mixing expanded polystyrene (EPS) beads with mortar to simulate degradation, and sound specimens include no beads. Measurement of acoustic emission (AE) was performed using an AE transducer. The changes in AE behavior with increase in strain were measured for a uniaxial compression test and a splitting test. The behaviors were investigated in comparison to the change in the damage variable. The AE parameters (rise time, reverberation frequency and average signal level (ASL) ) were evaluated by the average every ten seconds.


2019 ◽  
Vol 7 (6) ◽  
pp. 415
Author(s):  
Wu Zhichou ◽  
Zhang Ning ◽  
Wang Jiabo ◽  
Wang Shuo

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


Sign in / Sign up

Export Citation Format

Share Document