scholarly journals Experimental characterization of starch/beet-pulp bricks for building applications: Drying kinetics and mechanical behavior

2020 ◽  
Vol 264 ◽  
pp. 120270
Author(s):  
Georges Costantine ◽  
Elias Harb ◽  
Christophe Bliard ◽  
Chadi Maalouf ◽  
Elias Kinab ◽  
...  
2019 ◽  
Vol 195 ◽  
pp. 83-94 ◽  
Author(s):  
Daniel Sebastia-Saez ◽  
Leonor Hernandez ◽  
Harvey Arellano-Garcia ◽  
Jose Enrique Julia

2021 ◽  
Vol 898 ◽  
pp. 43-48
Author(s):  
Claudia Brito de Carvalho Bello ◽  
Daniele Baraldi ◽  
Antonella Cecchi ◽  
Daniel V. Oliveira

In the last years, the interest in eco-sustainable composites has consistently increased. Such innovative materials are actually a promising sustainable solution for structural strengthening since they can be an alternative to petroleum‐based materials, which are frequently used for masonry retrofitting. This work describes an experimental campaign dedicated to investigating the behavior of Fabric-Reinforced Cementitious Matrix (FRCM) with natural fibers (NFRCM) made with eco-sustainable materials. Experimental tests are performed on unreinforced masonry panels (URM) and reinforced ones (RM), for characterizing their mechanical behavior. URM samples are compared with RM ones accounting for their response under shear actions.


2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


Sign in / Sign up

Export Citation Format

Share Document