Experimental investigations on the asymptotic fracture energy for large mass concrete specimens using wedge splitting test

2021 ◽  
Vol 279 ◽  
pp. 122405
Author(s):  
Azzeddine Bakour ◽  
Mahdi Ben Ftima
2016 ◽  
Vol 40 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Seong Hyeon Na ◽  
Jae Hoon Kim ◽  
Hoon Seok Choi ◽  
Jae Beom Park ◽  
Shin Hoe Kim ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 3249 ◽  
Author(s):  
Stückelschweiger ◽  
Gruber ◽  
Jin ◽  
Harmuth

The mode I fracture behavior of ordinary refractory materials is usually tested with the wedge-splitting test. At elevated temperatures, the optical displacement measurement is difficult because of the convection in the furnace and possible reactions of refractory components with the ambient atmosphere. The present paper introduces a newly developed testing device, which is able to perform such experiments up to 1500 °C. For the testing of carbon-containing refractories a gas purging, for example, with argon, is possible. Laser speckle extensometers are applied for the displacement measurement. A carbon-containing magnesia refractory (MgO–C) was selected for a case study. Based on the results obtained from tests, fracture mechanical parameters such as the specific fracture energy and the nominal notch tensile strength were calculated. An inverse simulation procedure applying the finite element method yields tensile strength, the total specific fracture energy, and the strain-softening behavior. Additionally, the creep behavior was also considered for the evaluation.


Holzforschung ◽  
2002 ◽  
Vol 56 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Alexander Reiterer ◽  
Gerhard Sinn

Summary The fracture properties of unmodified and modified (heat treatments under various conditions and acetylation) sprucewood are investigated using the wedge splitting test. Fracture parameters measured include critical stress intensity factor and specific fracture energy under Mode I loading and specific fracture energy under Mode III loading. The Mode I fracture properties are reduced by all kinds of modification. However, acetylation leads to a reduction of only 20%whereas heat treatments reduce the properties to a much greater extent, approximately 50%to 80%. The Mode III fracture properties are influenced less. SEM pictures of the fracture surfaces support the described findings.


2010 ◽  
Vol 146-147 ◽  
pp. 1524-1528 ◽  
Author(s):  
Xue Zhi Wang ◽  
Zong Chao Xu ◽  
Zhong Bi ◽  
Hao Wang

The wedge splitting test specimens with three series of different relative crack length were used to study the influences of relative crack length on the fracture toughness of common concrete. The suitable formulation for fracture toughness of concrete with different relative crack length was gotten on comparing between fracture toughness test results and computation results of the model developed from Hu formula.


2018 ◽  
Vol 784 ◽  
pp. 85-90
Author(s):  
Stanislav Seitl ◽  
Petr Miarka ◽  
Ildikó Merta ◽  
Zbyněk Keršner

Wedge-splitting test is widely used fracture mechanical test for its stability in measurement during the testing and many papers were published. However, the biaxial wedge-splitting test is relatively a new method and the numerical stress analysis of such test is necessary. Especially the investigation of the stress fields in the vicinity of the crack tip. In this contribution, influence of various biaxial stress level is discussed on values of first and second terms of William’s expansion.


Sign in / Sign up

Export Citation Format

Share Document