Minimising risk of early-age thermal cracking and delayed ettringite formation in concrete – A hybrid numerical simulation and genetic algorithm mix optimisation approach

2021 ◽  
Vol 299 ◽  
pp. 124280
Author(s):  
Alireza A. Chiniforush ◽  
Maryam Gharehchaei ◽  
Ali Akbar Nezhad ◽  
Arnaud Castel ◽  
Farzad Moghaddam ◽  
...  
2016 ◽  
Vol 711 ◽  
pp. 722-729
Author(s):  
Othman Omikrine-Metalssi ◽  
Badreddine Kchakech ◽  
Stéphane Lavaud ◽  
Bruno Godart

Delayed ettringite formation (DEF) can affect the long-term durability of concrete structures by causing cracking and expansion of the material. Consequently, mechanical properties decrease which may cause large structural disorders due to unexpected deformations and additional stresses in concrete and reinforcement. This reaction consists in ettringite crystallization within concrete after hardening is substantially complete, and in which no sulphates come from outside the cement paste. It may occur in materials that have been subjected to temperature above about 65 °C at early age and to high humidity. At this high temperature, the ettringite turns unstable while the concrete is still plastic and forms again after cooling in the hardened material, thus generating swelling due to crystallisation pressure.This article aims to present a new model for the calculation of structures affected by DEF and to study the effect of the prefabrication temperature on the development of this reaction. In this context, the elaborated model was applied to the 3D simulations of a real bridge affected by this phenomenon. The results highlight that the temperature reached in the precast beams of the studied bridge during prefabrication has a significant effect on the displacements and stresses. Therefore, more precise control of the prefabrication temperature has to be applied in order to prevent the swelling and damage to structures.


2002 ◽  
Vol 32 (11) ◽  
pp. 1729-1736 ◽  
Author(s):  
Zhaozhou Zhang ◽  
Jan Olek ◽  
Sidney Diamond

2016 ◽  
Vol 7 (6) ◽  
pp. 185
Author(s):  
Mouna Barhmi ◽  
M'hammed Merbouh ◽  
Hamid Khachab ◽  
Nabil Bella ◽  
Mohammed El Mir ◽  
...  

Author(s):  
Andrew Z. Boeckmann ◽  
Zakaria El-tayash ◽  
J. Erik Loehr

Some U.S. transportation agencies have recently applied mass concrete provisions to drilled shafts, imposing limits on maximum temperatures and maximum temperature differentials. On one hand, temperatures commonly observed in large-diameter drilled shafts have been observed to cause delayed ettringite formation (DEF) and thermal cracking in above-ground concrete elements. On the other, the reinforcement and confinement unique to drilled shafts should provide resistance to thermal cracking, and the provisions that have been applied are based on dated practices for above-ground concrete. This paper establishes a rational procedure for design of drilled shafts for durability requirements in response to hydration temperatures, which addresses both DEF and thermal cracking. DEF is addressed through maximum temperature differential limitations that are based on concrete mix design parameters. Thermal cracking is addressed through calculations that explicitly consider the thermo-mechanical response of concrete for predicted temperatures. Results from application of the procedure indicate consideration of DEF and thermal cracking potential for drilled shafts is prudent, but provisions that have been applied to date are overly restrictive in many circumstances, particularly the commonly adopted 35°F maximum temperature differential provision.


2017 ◽  
Vol 143 ◽  
pp. 580-588 ◽  
Author(s):  
Björn Höhlig ◽  
Christof Schröfl ◽  
Simone Hempel ◽  
Ina Noack ◽  
Viktor Mechtcherine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document