Utilization of waste polyethylene terephthalate (PET) as partial replacement of bitumen in stone mastic asphalt

2021 ◽  
Vol 309 ◽  
pp. 125176
Author(s):  
Lameck Lugeiyamu ◽  
Ma Kunlin ◽  
Elvis S.K. Mensahn ◽  
Ahmad Faraz
2012 ◽  
Vol 36 ◽  
pp. 984-989 ◽  
Author(s):  
Esmaeil Ahmadinia ◽  
Majid Zargar ◽  
Mohamed Rehan Karim ◽  
Mahrez Abdelaziz ◽  
Ebrahim Ahmadinia

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Saeed Pourtahmasb ◽  
Mohamed Rehan Karim

Recycled concrete aggregate (RCA) is considered as one of the largest wastes in the entire world which is produced by demolishing concrete structures such as buildings, bridges, and dams. It is the intention of scientists and researchers, as well as people in authority, to explore waste material recycling for environmental and economic advantages. The current paper presents an experimental research on the feasibility of reusing RCA in stone mastic asphalt (SMA) mixtures as a partial replacement of coarse and fine aggregates. The engineering properties of SMA mixtures containing RCA have been evaluated for different percentages of binders based on the Marshall mix design method. The outcomes were statistically analyzed using two-factor analysis of variance (ANOVA). Test results revealed that the performance of SMA mixtures is affected by RCA due to higher porosity and absorption of RCA in comparison with virgin granite aggregates. However, the engineering properties of SMA mixtures containing a particular amount of RCA showed the acceptable trends and could satisfy the standard requirements. Moreover, to achieve desirable performance characteristics, more caution should be made on properties of SMA mixtures containing RCA.


2021 ◽  
Vol 2 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Bashir.A Almahdi ◽  
Abobaker G. F. Ahmeda ◽  
Ibrahim Adwan ◽  
Mohd Azizul Ladin

The feasibility of utilizing waste material for road construction is encouraging as it can decrease waste material harmful to the environment. Hence, a more sustainable method and a meticulous study of the available admixtures utilized to substitute standard asphalt binders with waste material must be conducted. However, there are several concerns and doubts about the real situation arising from the chemical and physical traits, as well as the mechanical performance issuing from the integration of waste material within the asphalt pavement to alleviate roads surface's permanent deformation. This investigation was carried out to study physical improvements made on ACW-14 bitumen by adding waste Polyethylene Terephthalate (PET) to serve as a partial replacement for bitumen content compared to normal, conventional 80/100 bitumen physical and rheological behavior. PET percentage added to the bitumen content was 10%, 8%, 6%, 4% and 2% of optimum bitumen content weight. The outcomes concluded that the best performance of bitumen on its density, VTM, VFB, flow, stability, and stiffness was achieved when 5.8% of Optimum Modified-Bitumen Content using PET. All the results obtained have been compared according to JKR Standards results, and the conclusion has fulfilled these requirements.


2021 ◽  
Vol 9 (2) ◽  
pp. 76-82
Author(s):  
Omar T. Mahmood

Globally, a huge quantity of alum sludge waste is produced as a by-product material from drinking water treatment plants that utilize aluminum salts as an essential coagulate and is the most generally produced water treatment remaining sludge around the world, which causes a serious environmental problem. Direct discarding of this substance has ecological effects. Hence, it is important to reuse this alum sludge waste material in such a manner to diminish its detrimental impacts on the environment. This research investigates the possibility of reusing alum sludge waste as a partial replacement of cement filler in stone mastic asphalt (SMA) paving mixtures. For this investigation, the alum sludge was used as a filler material in SMA mixtures in two modes; dried alum sludge at 110°C and burned alum sludge at 700°C. Different percentages of alum sludge were used as a replacement by the total weight of mineral filler at 0, 20, 40, 60, 80, and 100%. The results showed that using alum sludge as a substitution of filler in SMA mixtures reduces the performance of the mixtures in terms of Marshall properties and tensile strength for both dried and burned alum sludge compared with a standard mix. However, the performance of the mixtures containing burned alum sludge gave a better performance than the mixtures containing dried alum sludge.


2014 ◽  
Author(s):  
Anit Giri ◽  
Frank Kellogg ◽  
Kyu Cho ◽  
Marc Pepi

2016 ◽  
Vol 90 ◽  
pp. 188-194 ◽  
Author(s):  
Petr Klímek ◽  
Tomáš Morávek ◽  
Jozef Ráhel ◽  
Monika Stupavská ◽  
David Děcký ◽  
...  

Author(s):  
Sajjad Noura ◽  
Abdulnaser M. Al-Sabaeei ◽  
Gailan Ismat Safaeldeen ◽  
Ratnasamy Muniandy ◽  
Alan Carter

Author(s):  
Ayad Subhy ◽  
Davide Lo Presti ◽  
Gordon Airey ◽  
Iswandaru Widyatmoko

Sign in / Sign up

Export Citation Format

Share Document