Thermal degradation of potassium-activated ternary slag-fly ash-silica fume binders

2022 ◽  
Vol 320 ◽  
pp. 126304
Author(s):  
Rongjin Cai ◽  
Tong Wu ◽  
Chuanqing Fu ◽  
Hailong Ye
2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

Author(s):  
Anjaneya Babu Padavala ◽  
Malasani Potharaju ◽  
Venkata Ramesh Kode

2012 ◽  
Vol 29 ◽  
pp. 33-41 ◽  
Author(s):  
Vili Lilkov ◽  
Ognyan Petrov ◽  
Yana Tzvetanova ◽  
Plamen Savov

2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


Sign in / Sign up

Export Citation Format

Share Document