MSWR-LRCN: A new deep learning approach to remaining useful life estimation of bearings

2022 ◽  
Vol 118 ◽  
pp. 104969
Author(s):  
Yongyi Chen ◽  
Dan Zhang ◽  
Wen-an Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hai-Kun Wang ◽  
Yi Cheng ◽  
Ke Song

The remaining useful life estimation is a key technology in prognostics and health management (PHM) systems for a new generation of aircraft engines. With the increase in massive monitoring data, it brings new opportunities to improve the prediction from the perspective of deep learning. Therefore, we propose a novel joint deep learning architecture that is composed of two main parts: the transformer encoder, which uses scaled dot-product attention to extract dependencies across distances in time series, and the temporal convolution neural network (TCNN), which is constructed to fix the insensitivity of the self-attention mechanism to local features. Both parts are jointly trained within a regression module, which implies that the proposed approach differs from traditional ensemble learning models. It is applied on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset from the Prognostics Center of Excellence at NASA Ames, and satisfactory results are obtained, especially under complex working conditions.


Author(s):  
Andrés Ruiz-Tagle Palazuelos ◽  
Enrique López Droguett ◽  
Rodrigo Pascual

With the availability of cheaper multi-sensor systems, one has access to massive and multi-dimensional sensor data for fault diagnostics and prognostics. However, from a time, engineering and computational perspective, it is often cost prohibitive to manually extract useful features and to label all the data. To address these challenges, deep learning techniques have been used in the recent years. Within these, convolutional neural networks have shown remarkable performance in fault diagnostics and prognostics. However, this model present limitations from a prognostics and health management perspective: to improve its feature extraction generalization capabilities and reduce computation time, ill-based pooling operations are employed, which require sub-sampling of the data, thus loosing potentially valuable information regarding an asset’s degradation process. Capsule neural networks have been recently proposed to address these problems with strong results in computer vision–related classification tasks. This has motivated us to extend capsule neural networks for fault prognostics and, in particular, remaining useful life estimation. The proposed model, architecture and algorithm are tested and compared to other state-of-the art deep learning models on the benchmark Commercial Modular Aero Propulsion System Simulation turbofans data set. The results indicate that the proposed capsule neural networks are a promising approach for remaining useful life prognostics from multi-dimensional sensor data.


2019 ◽  
Vol 19 (5) ◽  
pp. 1542-1559 ◽  
Author(s):  
Amin Aria ◽  
Enrique Lopez Droguett ◽  
Shapour Azarm ◽  
Mohammad Modarres

In this article, a new deep learning-based approach for online estimation of damage size and remaining useful life of structures is presented. The proposed approach consists of three modules. In the first module, a long short-term memory regression model is used to construct a sensor-based estimation of the damage size where different ranges of temporal correlations are considered for their effects on the accuracy of the damage size estimations. In the second module, a convolutional neural network semantic image segmentation approach is used to construct automated damage size estimations in which a pixel-wise classification is carried out on images of the damaged areas. Using physics-of-failure relations, frequency mismatches associated with sensor- and image-based size estimations are resolved. Finally, in the third module, damage size estimations obtained by the first two modules are fused together for an online remaining useful life estimation of the structure. Performance of the proposed approach is evaluated using sensor and image data obtained from a set of fatigue crack experiments performed on aluminum alloy 7075-T6 specimens. It is shown that using acoustic emission signals obtained from sensors and microscopic images in these experiments, the damage size estimations obtained from the proposed data fusion approach have higher accuracy than the sensor-based and higher frequency than the image-based estimations. Moreover, the accuracy of the data fusion estimations is found to be more than that of image-based estimations for the experiment with the largest sensor dataset. Based on the results obtained, it is concluded that the consideration of longer temporal correlations can lead to improvements in the accuracy of crack size estimations and, thus, a better remaining useful life estimation for structures.


2021 ◽  
Vol 68 (3) ◽  
pp. 2521-2531 ◽  
Author(s):  
Zhenghua Chen ◽  
Min Wu ◽  
Rui Zhao ◽  
Feri Guretno ◽  
Ruqiang Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document