High-throughput screening for single nucleotide polymorphisms (SNPs) in specific DNA fragments by automated SSCP-based capillary electrophoresis

2011 ◽  
Vol 22 ◽  
pp. S103-S104
Author(s):  
Mihael Cristin Ichim
2011 ◽  
Vol 77 (17) ◽  
pp. 6290-6294 ◽  
Author(s):  
Sara Lomonaco ◽  
Stephen J. Knabel ◽  
Alessandra Dalmasso ◽  
Tiziana Civera ◽  
Maria Teresa Bottero

ABSTRACTA novel primer extension-based, multiplex minisequencing assay targeting six highly informative single nucleotide polymorphisms (SNPs) in four virulence genes correctly identified and differentiated all four epidemic clones (ECs) ofListeria monocytogenesand 9 other strains initially misclassified as non-ECs. This assay allows rapid, accurate, and high-throughput screening for all known ECs ofL. monocytogenes.


2007 ◽  
Vol 10 (4) ◽  
pp. 604-625 ◽  
Author(s):  
Ulf Hannelius ◽  
Loreana Gherman ◽  
Ville-Veikko Mäkelä ◽  
Astrid Lindstedt ◽  
Marco Zucchelli ◽  
...  

AbstractA requirement for performing robust genetic and statistical analyses on twins is correctly assigned zygosities. In order to increase the power to detect small risk factors of disease, zygosity testing should also be amenable for high throughput screening. In this study we validate and implement the use of a panel of 50 single nucleotide polymorphisms (SNPs) for reliable high throughput zygosity testing and compare it to a panel of 16 short tandem repeats (STRs). We genotyped both genomic (gDNA) and whole genome amplified DNA (WGA DNA), ending up with 47 SNP and 11 STR markers fulfilling our quality criteria. Out of 99 studied twin pairs, 2 were assigned a different zygosity using SNP and STR data as compared to self reported zygosity in a questionnaire. We also performed a sensitivity analysis based on simulated data where we evaluated the effects of genotyping error, shifts in allele frequencies and missing data on the qualitative zygosity assignments. The frequency of false positives was less than 0.01 when assuming a 1% genotyping error, a decrease of 10% of the observed minor allele frequency compared to the actual values and up to 10 missing markers. The SNP markers were also successfully genotyped on both gDNA and WGA DNA from whole blood, saliva and filter paper. In conclusion, we validate a robust panel of 47 highly multiplexed SNPs that provide reliable and high quality data on a range of different DNA templates.


2012 ◽  
Vol 49 (2) ◽  
pp. 307-315 ◽  
Author(s):  
Yoosook Lee ◽  
Stephanie N. Seifert ◽  
Christen M. Fornadel ◽  
Douglas E. Norris ◽  
Gregory C. Lanzaro

2004 ◽  
Vol 50 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
Susan Bortolin ◽  
Margot Black ◽  
Hemanshu Modi ◽  
Ihor Boszko ◽  
Daniel Kobler ◽  
...  

Abstract Background: We have developed a novel, microsphere-based universal array platform referred to as the Tag-It™ platform. This platform is suitable for high-throughput clinical genotyping applications and was used for multiplex analysis of a panel of thrombophilia-associated single-nucleotide polymorphisms (SNPs). Methods: Genomic DNA from 132 patients was amplified by multiplex PCR using 6 primer sets, followed by multiplex allele-specific primer extension using 12 universally tagged genotyping primers. The products were then sorted on the Tag-It array and detected by use of the Luminex xMAP™ system. Genotypes were also determined by sequencing. Results: Empirical validation of the universal array showed that the highest nonspecific signal was 3.7% of the specific signal. Patient genotypes showed 100% concordance with direct DNA sequencing data for 736 SNP determinations. Conclusions: The Tag-It microsphere-based universal array platform is a highly accurate, multiplexed, high-throughput SNP-detection platform.


Sign in / Sign up

Export Citation Format

Share Document