Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment

2005 ◽  
Vol 47 (6) ◽  
pp. 1415-1428 ◽  
Author(s):  
Xinqiang Wu ◽  
Yasuyuki Katada
2013 ◽  
Vol 794 ◽  
pp. 441-448 ◽  
Author(s):  
G.V. Prasad Reddy ◽  
R. Sandhya ◽  
M.D. Mathew ◽  
S. Sankaran

Low cycle fatigue (LCF) and Creep-fatigue interaction (CFI) behavior of 316LN austenitic stainless steel alloyed with 0.07, 0.11, 0.14, .22 wt.% nitrogen is briefly discussed in this paper. The strain-life fatigue behavior of these steels is found to be dictated by not only cyclic plasticity but also by dynamic strain aging (DSA) and secondary cyclic hardening (SCH). The influence of the above phenomenon on cyclic stress response and fatigue life is evaluated in the present study. The above mentioned steels exhibited both single-and dual-slope strain-life fatigue behavior depending on the test temperatures. Concomitant dislocation substructural evolution has revealed transition in substructures from planar to cell structures justifying the change in slope. The beneficial effect of nitrogen on LCF life is observed to be maximum for 316LN with nitrogen in the range 0.11 - 0.14 wt.%, for the tests conducted over a range of temperatures (773-873 K) and at ±0.4 and 0.6 % strain amplitudes at a strain rate of 3*10-3 s-1. A decrease in the applied strain rate from 3*10-3 s-1 to 3*10-5 s-1 or increase in the test temperature from 773 to 873 K led to a peak in the LCF life at a nitrogen content of 0.07 wt.%. Similar results are obtained in CFI tests conducted with tensile hold periods of 13 and 30 minutes. Fractography studies of low strain rate and hold time tested specimens revealed extensive intergranular cracking.


2013 ◽  
Vol 55 ◽  
pp. 176-180 ◽  
Author(s):  
Sayan Kalyan Chandra ◽  
Vani Shankar ◽  
K. Mariappan ◽  
R. Sandhya ◽  
P.C. Chakraborty

Author(s):  
Xinqiang Wu ◽  
Yasuyuki Katada

Safe and reliable management of light water reactors demand a full understanding on their component materials properties throughout their service lives. In present work the effects of strain rate on low cycle fatigue behavior of ASTM A533B pressure vessel steels after long-term thermal aging at 673 K in air have been investigated in simulated BWR environments. It was found that the aging treatment led to a certain decrease in fatigue life. Environmental effect on the fatigue life of aged materials closely depended on strain rate. More strongly environmental effect appeared at low strain rate. The aging treatment enhanced the stain-rate dependence of the fatigue resistance of A533B steels. Comparison between ASME design fatigue curves and present results as well as some literatures’ data suggested that safety margins of the standard design curves tended to decrease with decrease in strain rate. Based on the above results, possible corrosion fatigue mechanisms of pressure vessel steels in high temperature water were discussed by taking into account the effects of inclusions, hydrogen embrittlement, dynamic strain aging and aging-induced material degradation as well as their combined actions.


Author(s):  
J. K. Wright ◽  
L. J. Carroll ◽  
J. A. Simpson ◽  
R. N. Wright

The low cycle fatigue behavior of Alloy 617 has been evaluated at 850 °C and 950 °C, the temperature range of particular interest for the intermediate heat exchanger on a proposed high-temperature gas-cooled nuclear reactor. Cycles to failure were measured as a function of total strain range and varying strain rate. Results of the current experiments compare well with previous work reported in the literature for a similar range of temperatures and strain rate. The combined data demonstrate a Coffin–Manson relationship, although the slope of the Coffin–Manson fit is close to −1 rather than the typically reported value of −0.5. At 850 °C and a strain rate of 10−3 /s Alloy 617 deforms by a plastic flow mechanism in low cycle fatigue and exhibits some cyclic hardening. At 950 °C for strain rates of 10−3–10−5 /s, Alloy 617 deforms by a solute drag creep mechanism during low cycle fatigue and does not show significant cyclic hardening or softening. At this temperature the strain rate has little influence on the cycles to failure for the strain ranges tested.


1996 ◽  
Vol 27 (2) ◽  
pp. 255-267 ◽  
Author(s):  
K. Bhanu Sankara Rao ◽  
H. Schiffers ◽  
H. Schuster ◽  
G. R. Halford

Sign in / Sign up

Export Citation Format

Share Document