scholarly journals Hepatitis C virus—host interactions, replication, and viral assembly

2012 ◽  
Vol 2 (6) ◽  
pp. 725-732 ◽  
Author(s):  
Ana Shulla ◽  
Glenn Randall
2004 ◽  
Vol 85 (11) ◽  
pp. 3173-3188 ◽  
Author(s):  
Peter Simmonds

In the 15 years since the discovery of hepatitis C virus (HCV), much has been learned about its role as a major causative agent of human liver disease and its ability to persist in the face of host-cell defences and the immune system. This review describes what is known about the diversity of HCV, the current classification of HCV genotypes within the family Flaviviridae and how this genetic diversity contributes to its pathogenesis. On one hand, diversification of HCV has been constrained by its intimate adaptation to its host. Despite the >30 % nucleotide sequence divergence between genotypes, HCV variants nevertheless remain remarkably similar in their transmission dynamics, persistence and disease development. Nowhere is this more evident than in the evolutionary conservation of numerous evasion methods to counteract the cell's innate antiviral defence pathways; this series of highly complex virus–host interactions may represent key components in establishing its ‘ecological niche’ in the human liver. On the other hand, the mutability and large population size of HCV enables it to respond very rapidly to new selection pressures, manifested by immune-driven changes in T- and B-cell epitopes that are encountered on transmission between individuals with different antigen-recognition repertoires. If human immunodeficiency virus type 1 is a precedent, future therapies that target virus protease or polymerase enzymes may also select very rapidly for antiviral-resistant mutants. These contrasting aspects of conservatism and adaptability provide a fascinating paradigm in which to explore the complex selection pressures that underlie the evolution of HCV and other persistent viruses.


2010 ◽  
Vol 16 (6) ◽  
pp. 277-286 ◽  
Author(s):  
Philippe Georgel ◽  
Catherine Schuster ◽  
Mirjam B. Zeisel ◽  
Françoise Stoll-Keller ◽  
Thomas Berg ◽  
...  

2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Tu M. Pham ◽  
Si C. Tran ◽  
Yun-Sook Lim ◽  
Soon B. Hwang

ABSTRACT Hepatitis C virus (HCV) is highly dependent on cellular factors for viral propagation. Using high-throughput next-generation sequencing, we analyzed the host transcriptomic changes and identified 30 candidate genes which were upregulated in cell culture-grown HCV (HCVcc)-infected cells. Of these candidates, we selected Rab32 for further investigation. Rab32 is a small GTPase that regulates a variety of intracellular membrane-trafficking events in various cell types. In this study, we demonstrated that both mRNA and protein levels of Rab32 were increased in HCV-infected cells. Furthermore, we showed that HCV infection converted the predominantly expressed GTP-bound Rab32 to GDP-bound Rab32, contributing to the aggregation of Rab32 and thus making it less sensitive to cellular degradation machinery. In addition, GDP-bound Rab32 selectively interacted with HCV core protein and deposited core protein into the endoplasmic reticulum (ER)-associated Rab32-derived aggregated structures in the perinuclear region, which were likely to be viral assembly sites. Using RNA interference technology, we demonstrated that Rab32 was required for the assembly step but not for other stages of the HCV life cycle. Taken together, these data suggest that HCV may modulate Rab32 activity to facilitate virion assembly. IMPORTANCE Rab32, a member of the Ras superfamily of small GTPases, regulates various intracellular membrane-trafficking events in many cell types. In this study, we showed that HCV infection concomitantly increased Rab32 expression at the transcriptional level and altered the balance between GDP- and GTP-bound Rab32 toward production of Rab32-GDP. GDP-bound Rab32 selectively interacted with HCV core protein and enriched core in the ER-associated Rab32-derived aggregated structures that were probably necessary for viral assembly. Indeed, we showed that Rab32 was specifically required for the assembly of HCV. Collectively, our study identifies that Rab32 is a novel host factor essential for HCV particle assembly.


2013 ◽  
Vol 19 (6) ◽  
pp. 722-729 ◽  
Author(s):  
Qisheng Li ◽  
Véronique Pène ◽  
Siddharth Krishnamurthy ◽  
Helen Cha ◽  
T Jake Liang

2008 ◽  
Vol 48 (3) ◽  
pp. 523-525 ◽  
Author(s):  
Joachim Lupberger ◽  
Laurent Brino ◽  
Thomas F. Baumert

2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Cameron J. Schweitzer ◽  
Fang Zhang ◽  
Audrey Boyer ◽  
Kristin Valdez ◽  
Maggie Cam ◽  
...  

ABSTRACT Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc downstream-regulated gene 1 (NDRG1) limits productive hepatitis C virus (HCV) infection by inhibiting viral assembly. Interestingly, HCV infection downregulates NDRG1 protein and mRNA expression. The loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by upregulating MYC, which directly inhibits the transcription of NDRG1. The upregulation of MYC also leads to the reduced expression of the NDRG1-specific kinase serum/glucocorticoid-regulated kinase 1 (SGK1), resulting in a markedly diminished phosphorylation of NDRG1. The knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both the transcriptional and posttranslational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by downregulating NDRG1 via a MYC-dependent mechanism. IMPORTANCE Hepatitis C virus (HCV) is an enveloped single-stranded RNA virus that targets hepatocytes in the liver. HCV is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and estimates suggest a global prevalence of 2.35%. Up to 80% of acutely infected individuals will develop chronic infection, and as many as 5% eventually progress to liver cancer. An understanding of the mechanisms behind virus-host interactions and viral carcinogenesis is still lacking. The significance of our research is that it identifies a previously unknown relationship between HCV and a known tumor-associated gene. Furthermore, our data point to a new role for this gene in the liver and in lipid metabolism. Thus, HCV infection serves as a great biological model to advance our knowledge of liver functions and the development of liver cancer.


2013 ◽  
Vol 13 (1) ◽  
pp. 184-203 ◽  
Author(s):  
Marie-Anne Germain ◽  
Laurent Chatel-Chaix ◽  
Bridget Gagné ◽  
Éric Bonneil ◽  
Pierre Thibault ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document