scholarly journals Fourier continuation method for incompressible fluids with boundaries

2020 ◽  
Vol 256 ◽  
pp. 107482 ◽  
Author(s):  
Mauro Fontana ◽  
Oscar P. Bruno ◽  
Pablo D. Mininni ◽  
Pablo Dmitruk
2018 ◽  
Author(s):  
Ruonan Shi ◽  
Jae-Hun Jung ◽  
Ferdinand Schweser

AbstractThe MRI image is obtained in the spatial domain from the given Fourier coefficients in the frequency domain. It is costly to obtain the high resolution image because it requires higher frequency Fourier data while the lower frequency Fourier data is less costly and effective if the image is smooth. However, the Gibbs ringing, if existent, prevails with the lower frequency Fourier data. We propose an efficient and accurate local reconstruction method with the lower frequency Fourier data that yields sharp image profile near the local edge. The proposed method utilizes only the small number of image data in the local area. Thus the method is efficient. Furthermore the method is accurate because it minimizes the global effects on the reconstruction near the weak edges shown in many other global methods for which all the image data is used for the reconstruction. To utilize the Fourier method locally based on the local non-periodic data, the proposed method is based on the Fourier continuation method. This work is an extension of our previous 1D Fourier domain decomposition method to 2D Fourier data. The proposed method first divides the MRI image in the spatial domain into many subdomains and applies the Fourier continuation method for the smooth periodic extension of the subdomain of interest. Then the proposed method reconstructs the local image based on L2 minimization regularized by the L1 norm of edge sparsity to sharpen the image near edges. Our numerical results suggest that the proposed method should be utilized in dimension-by-dimension manner instead of in a global manner for both the quality of the reconstruction and computational efficiency. The numerical results show that the proposed method is effective when the local reconstruction is sought and that the solution is free of Gibbs oscillations.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Oscar P. Bruno ◽  
Timothy Elling ◽  
Ayon Sen

We present a new computational method for the solution of elliptic eigenvalue problems with variable coefficients in general two-dimensional domains. The proposed approach is based on use of the novel Fourier continuation method (which enables fast and highly accurate Fourier approximation of nonperiodic functions in equispaced grids without the limitations arising from the Gibbs phenomenon) in conjunction with an overlapping patch domain decomposition strategy and Arnoldi iteration. A variety of examples demonstrate the versatility, accuracy, and generality of the proposed methodology.


2014 ◽  
Vol 132 (1) ◽  
pp. 427-437 ◽  
Author(s):  
Andrea Mentrelli ◽  
Tommaso Ruggeri

2019 ◽  
Vol 26 (7-8) ◽  
pp. 459-474
Author(s):  
Saeed Mahmoudkhani ◽  
Hodjat Soleymani Meymand

The performance of the cantilever beam autoparametric vibration absorber with a lumped mass attached at an arbitrary point on the beam span is investigated. The absorber would have a distinct feature that in addition to the two-to-one internal resonance, the one-to-three and one-to-five internal resonances would also occur between flexural modes of the beam by tuning the mass and position of the lumped mass. Special attention is paid on studying the effect of these resonances on increasing the effectiveness and extending the range of excitation amplitudes at which the autoparametric vibration absorber remains effective. The problem is formulated based on the third-order nonlinear Euler–Bernoulli beam theory, where the assumed-mode method is used for deriving the discretized equations of motion. The numerical continuation method is then applied to obtain the frequency response curves and detect the bifurcation points. The harmonic balance method is also employed for detecting the type of internal resonances between flexural modes by inspecting the frequency response curves corresponding to different harmonics of the response. Parametric studies on the performance of the absorber are conducted by varying the position and mass of the lumped mass, while the frequency ratio of the primary system to the first mode of the beam is kept equal to two. Results indicated that the one-to-five internal resonance is especially responsible for the considerable enhancement of the performance.


Sign in / Sign up

Export Citation Format

Share Document