Synthesis of nanoparticle-built FeVO4 microspheres with improved low temperature catalytic activity in ammoxidation

2021 ◽  
Vol 784 ◽  
pp. 139107
Author(s):  
Xiongjian Li ◽  
Hao Hu ◽  
Piao Chen ◽  
Fang Chen ◽  
Shuijin Yang
Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


1986 ◽  
Vol 51 (8) ◽  
pp. 1571-1578 ◽  
Author(s):  
Alois Motl

The radiation catalytic properties of the BASF K-3-10 catalyst were studied, namely the dependence of these effects on the time interval between the catalyst irradiation and the reaction itself and also on the length of the catalyst use. The catalytic effects decrease exponentially with the interval between the irradiation and the reaction if the catalyst is kept in the presence of air. The stability of effects induced by various types of radiations increases in the sequence beta radiation - gamma radiation - fast neutrons. The radiation catalytic effect stability in the reaction increases in the same sequence.


2015 ◽  
Vol 5 (7) ◽  
pp. 3706-3713 ◽  
Author(s):  
Dae-Woon Jeong ◽  
Hyun-Suk Na ◽  
Jae-Oh Shim ◽  
Won-Jun Jang ◽  
Hyun-Seog Roh

The catalytic activity of Cu based catalysts is correlated to its amount of defect oxygen which strongly depends on the ratio of CeO2–ZrO2.


2014 ◽  
Vol 875-877 ◽  
pp. 213-217 ◽  
Author(s):  
Mohd Razali Sohot ◽  
Umi Sarah Jais ◽  
Muhd Rosli Sulaiman

Selective catalytic reduction (SCR) is a well-proven method to reduce NO emission. However, to choose the right catalyst that provides a surface for reaction between NO and ammonia at low temperatures is a challenging task for a catalysts developers. In an earlier study, we prepared V2O5-CeO2-SiO2 catalyst with increasing V2O5 content by sol-gel route and found that the catalytic activity improved with increasing the V2O5 loading up to 0.5%. The catalytic activity, however, dropped when V2O5 loading was about 1% and increased back when the loading of V2O5 was about 5%. In this study, we looked into the microstructural relationship to explain these findings. The microstructures of the catalysts before and after exposure to NO gas revealed that the catalysts with 0.2% and 0.5% V2O5 were more porous after the reduction process possibly due to improved breakdown of (NH4)HCO3 to NH3 by the possible interaction with the V2O5 and CeO2-containing catalysts which consequently resulted in a more efficient NO reduction to N2 and H2O at low temperature. The microstructure of the catalyst with 1% V2O5 content to 5%, improved back the efficiency although clogging by CeVO4 phase still possible due to its presence based on XRD. The well-ordered micropores before exposure to NO and the more efficient breakdown of (NH4)HCO3 could have contributed to increase back the catalytic activity at low temperature.


Sign in / Sign up

Export Citation Format

Share Document