On the existence and conditional energetic stability of solitary water waves with weak surface tension

2010 ◽  
Vol 348 (7-8) ◽  
pp. 397-402 ◽  
Author(s):  
Mark D. Groves ◽  
E. Wahlén
Water Waves ◽  
2021 ◽  
Author(s):  
M. D. Groves

AbstractIn the applied mathematics literature solitary gravity–capillary water waves are modelled by approximating the standard governing equations for water waves by a Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). These formal arguments have been justified by sophisticated techniques such as spatial dynamics and centre-manifold reduction methods on the one hand and variational methods on the other. This article presents a complete, self-contained account of an alternative, simpler approach in which one works directly with the Zakharov–Craig–Sulem formulation of the water-wave problem and uses only rudimentary fixed-point arguments and Fourier analysis.


Author(s):  
M. D. Groves ◽  
E. Wahlén

We present an existence and stability theory for gravity–capillary solitary waves with constant vorticity on the surface of a body of water of finite depth. Exploiting a rotational version of the classical variational principle, we prove the existence of a minimizer of the wave energy𝓗subject to the constraint𝓘= 2µ, where𝓘is the wave momentum and 0 <µ≪ 1. Since𝓗and𝓘are both conserved quantities, a standard argument asserts the stability of the setDµof minimizers: solutions starting nearDµremain close toDµin a suitably defined energy space over their interval of existence. In the applied mathematics literature solitary water waves of the present kind are described by solutions of a Korteweg–de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). We show that the waves detected by our variational method converge (after an appropriate rescaling) to solutions of the appropriate model equation asµ↓ 0.


2015 ◽  
Vol 220 (2) ◽  
pp. 747-807 ◽  
Author(s):  
M. D. Groves ◽  
S. M. Sun ◽  
E. Wahlén

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Marin Marin ◽  
M. M. Bhatti

AbstractThe present study deals with the head-on collision process between capillary–gravity solitary waves in a finite channel. The present mathematical modeling is based on Nwogu’s Boussinesq model. This model is suitable for both shallow and deep water waves. We have considered the surface tension effects. To examine the asymptotic behavior, we employed the Poincaré–Lighthill–Kuo method. The resulting series solutions are given up to third-order approximation. The physical features are discussed for wave speed, head-on collision profile, maximum run-up, distortion profile, the velocity at the bottom, and phase shift profile, etc. A comparison is also given as a particular case in our study. According to the results, it is noticed that the free parameter and the surface tension tend to decline the solitary-wave profile significantly. However, the maximum run-up amplitude was affected in great measure due to the surface tension and the free parameter.


2008 ◽  
Vol 597 ◽  
pp. 91-118 ◽  
Author(s):  
E. S. BENILOV ◽  
M. S. BENILOV ◽  
N. KOPTEVA

We examine steady flows of a thin film of viscous fluid on the inside of a cylinder with horizontal axis, rotating about this axis. If the amount of fluid in the cylinder is sufficiently small, all of it is entrained by rotation and the film is distributed more or less evenly. For medium amounts, the fluid accumulates on the ‘rising’ side of the cylinder and, for large ones, pools at the cylinder's bottom. The paper examines rimming flows with a pool affected by weak surface tension. Using the lubrication approximation and the method of matched asymptotics, we find a solution describing the pool, the ‘outer’ region, and two transitional regions, one of which includes a variable (depending on the small parameter) number of asymptotic zones.


2000 ◽  
Vol 409 ◽  
pp. 223-242 ◽  
Author(s):  
DARREN G. CROWDY

By adapting a new mathematical approach to the problem of steady free-surface Euler flows with surface tension recently devised by the present author, it is demonstrated that exact solutions for steady, free-surface multipole-driven Hele-Shaw flows with surface tension can be constructed using similar methods. Moreover, a (one-way) mathematical transformation between exact solutions to the two distinct free-boundary problems is identified: known exact solutions for free-surface Euler flows with surface tension are shown to automatically generate steady quadrupolar-driven Hele-Shaw flows (with non-zero surface tension) existing in exactly the same domain with the same free surface. This correspondence highlights the essential dynamical differences between the two physical problems. Using the transformation, the exact Hele-Shaw analogues of all known exact solutions for free-surface Euler flows (including Crapper's classic capillary water wave solution) are catalogued thereby producing many previously unknown exact solutions for steady Hele-Shaw flows with capillarity. In particular, this paper reports what are believed to be the first known exact solutions for Hele-Shaw flows with surface tension in a doubly-connected fluid region.


Sign in / Sign up

Export Citation Format

Share Document