An Existence Theory for Gravity–Capillary Solitary Water Waves
AbstractIn the applied mathematics literature solitary gravity–capillary water waves are modelled by approximating the standard governing equations for water waves by a Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). These formal arguments have been justified by sophisticated techniques such as spatial dynamics and centre-manifold reduction methods on the one hand and variational methods on the other. This article presents a complete, self-contained account of an alternative, simpler approach in which one works directly with the Zakharov–Craig–Sulem formulation of the water-wave problem and uses only rudimentary fixed-point arguments and Fourier analysis.