capillary water
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 98)

H-INDEX

22
(FIVE YEARS 6)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 59
Author(s):  
Haohao Cui ◽  
Guanghui Zhang ◽  
Jinzhe Wang ◽  
Qian Wang ◽  
Xujuan Lang

The natural vegetation in arid areas of northwest China is strongly dependent on the availability of groundwater. Significantly, capillary water plays an essential role in regulating the ecological groundwater level in the multilayered structure of the vadose zone. The soil-column test and field survey in the lower reaches of the Shiyang River Basin were conducted to investigate the influence of the multi-layered structure of the vadose zone on maintaining the ecological effect of groundwater. Based on the field survey, the results show that the depth of groundwater is 3.0 m, and the rising height of capillary water is 140 cm. In the soil-column test, the height of the wetting front of the column was 125 cm. During the water releasing test, the water held by the vadose zone was 182.54 mm, which would have maintained Haloxylon’s survival in a growing season. Therefore, the multi-layered structure of the vadose zone extends the ecological groundwater depth and consequently enhances the ecological function of groundwater. Importantly, with a lower groundwater level, the clay soil layer within the rising height range of the original capillary water would hold more water and maintain a higher water content for a certain period to supply surface vegetation.


2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Wangwen Huo ◽  
Zhiduo Zhu ◽  
Yuyi Peng ◽  
Shaoyun Pu ◽  
Yu Wan ◽  
...  

Author(s):  
Indrani Chakraborty ◽  
Nirmal Chandra Sukul ◽  
Anirban Sukul ◽  
Rathin Chakravarty

Background: A homeopathic potency is usually given to the nursing mother for the treatment of her baby. Potencies above 12 CH cross the Avogadro number and are, therefore, too dilute to contain any original drug molecules. A potency is thought to be specifically structured water carrying the imprint of original drug molecules. It may convert the water structure in the body of the mother and through her milk reach the suckling baby. Using a toad model we have recently demonstrated that the antialcoholic effect of Nux vomica 200 CH could be transferred from one group of toads to another through capillary water which carries the information of Nux vomica. Homeopathic potencies show UV spectra distinct from its diluent medium of aquous ethanol. Does a potency remain effective even after passage through a living body? Objectives: To demonstrate that a potency effect can be transferred through the body of a live toad to other groups of toads connected through water to the live toad. Further, we want to see whether the UV spectra of drug solution and of water connected to the drug are similar in nature. Methods: A live toad was held vertically with one hind limb dipped in Nux vomica 200 CH solution in a beaker and another limb in distilled water in another beaker. The second beaker was connected by wet cotton threads encased in polythene tubes to 5 beakers, each of which contained adult toads in distilled water. A batch of toads was directly treated with Nux vomica 200 CH. An equal number of toads in distilled water served as the untreated control. After 30 min the control and the two batches of treated toads were kept separately in 209 mM ethanol solution. Toads, that stopped movement, were placed in supine position on a dry surface. Failure to assume a normal sitting posture within a cutoff time of 60 sec was regarded as loss of righting reflex (RR). The experiment was replicated using large number of toads. UV spectra of Nux vomica 200 CH solution and of water before and after connection with the drug were obtained. Results: The percentage of toads losing RR in the three groups of toads increased with time of exposure to 209 mM ethanol solution. The loss of RR was significantly delayed with the direct treatment group ( P < 0.001, chi square test) and the connected groups ( P < 0.01 , χ2 test ) as compared to the control. The two former groups did not differ from each other significantly. UV spectra of Nux vomica 200 CH solution were similar to that of water connected to the drug solution. Conclusion: The antialcoholic effect of Nux vomica 200 CH could be transferred through the body of a live toad to other groups of toads. The drug did not undergo denaturation during its passage through the living body. That water carries the information of original drug is further evidenced by the spectral properties of water connected to the drug solution through capillary water.


2021 ◽  
Vol 11 (23) ◽  
pp. 11277
Author(s):  
Eva Jimenez-Relinque ◽  
Maria Grande ◽  
Francisco Rubiano ◽  
Marta Castellote

The use of photocatalysts to enhance the performance of construction materials with large surfaces exposed to sunlight has become an increasingly common practice in recent decades. Although construction material durability is of crucial importance and is extensively studied when incorporating new additions, very few studies have specifically addressed the effects when adding photocatalysts. This paper discusses the effect of TiO2-based photocatalysts on pavement durability (porosity, time of transmission of ultrasonic pulses, freeze-thaw resistance and capillary water absorption) and safety (slip resistance and roughness) by comparison of commercial photocatalytic materials of different families and twin materials without the photocatalyst added. The analysis covers concrete tile pavements and porous asphalt treated with photocatalysts in the form of sprayed emulsions, slurry admixtures or built-in during casting. The findings show that changes in the properties of a construction material induced by photocatalytic functionality depend primarily on the porous structure of the matrix and the properties of the resulting photocatalytic surface.


2021 ◽  
Vol 13 (22) ◽  
pp. 12610
Author(s):  
Mahmoud Ziada ◽  
Savaş Erdem ◽  
Yosra Tammam ◽  
Serenay Kara ◽  
Roberto Alonso González Lezcano

As the human population grows and technology advances, the demand for concrete and cement grows. However, it is critical to propose alternative ecologically suitable options to cement, the primary binder in concrete. Numerous researchers have recently concentrated their efforts on geopolymer mortars to accomplish this objective. The effects of basalt fiber (BF) on a geopolymer based on fly ash (FA) and basalt powder waste (BP) filled were studied in this research. The compressive and flexural strength, Charpy impact, and capillary water absorption tests were performed on produced samples after 28 days. Then, produced samples were exposed to the high-temperature test. Weight change, flexural strength, compressive strength, UPV, and microstructural tests of the specimens were performed after and before the effect of the high temperature. In addition, the results tests conducted on the specimens were compared after and before the high-temperature test. The findings indicated that BF had beneficial benefits, mainly when 1.2 percent BF was used. When the findings of samples containing 1.2 percent BF exposed to various temperatures were analyzed, it was revealed that it could increase compressive strength by up to 18 percent and flexural strength by up to 44 percent. In this study, the addition of BF to fly ash-based geopolymer samples improved the high-temperature resistance and mechanical properties.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012045
Author(s):  
K Grabowska ◽  
A Wieczorek ◽  
D Bednarska ◽  
M Koniorczyk

Abstract The paper explores the possibility of using organosilicon compounds (e.g., poly(dimethylsiloxane) and triethoxyoctylsilane) in commercial admixtures as internal hydrophobization agents for porous cement-based materials. The study involved the cement mortar with five different hydrophobic admixtures. Four of them is based on triethoxyoctylsilane, but with various concentration of the main ingredient, and one of them on poly(dimethylsiloxane). Mechanical properties, capillary water absorption, as well as microstructure were investigated. The organosilicon admixtures efficiently decrease the capillary water absorption even by 81% decreasing mechanical strength of cement mortar at the same time even by 55%. Only one admixture, based on poly(dimethylsiloxane) caused significant changes in microstructure of cement mortar.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012038
Author(s):  
Z Y Kong ◽  
H R Xie ◽  
Y K Cai ◽  
X Tan ◽  
S Hokoi ◽  
...  

Abstract Rising damp is common in brick buildings due to groundwater and natural precipitation, which not only causes deterioration of the walls, but also significantly affects the heat transfer coefficient, thermal inertia, and building energy consumption. In order to clarify the effects of rising damp on the heat transfer through traditional Chinese brick solid wall and cavity walls, two types of wall of 1.2 m wide and 3 m high were built in the laboratory. The heat transfer performance under the influence of capillary rising was tested by Simple heating box – heat flow meter method. Based on the data obtained from the experiment, the Energyplus was used to simulate the energy consumption of a Chinese typical residential building influenced by rising damp. The results proposed 3.67 W/m2·K and 3.61 W/m2·K as the recommended heat transfer coefficient for the moisture affected parts in the experimental solid and cavity wall, and the rising capillary water increased the heat transfer coefficients by 74% and 84%, respectively. The heating and cooling load of the solid-wall building under the influence of capillary water increased by 18.5% and 29.6%, respectively, while of cavity-walls building increased by 6.5% and 11.8%.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032097
Author(s):  
Marija Vaiciene ◽  
Jurgita Malaiskiene

Abstract In this work is analysing the impact of wood waste bottom ash (WWBA) on the physical mechanical properties of Portland cement concrete (PCC). WWBA is a waste generated in power plants during burning forest residues to produce energy and heat. In 2019, about 19,800 tons of WWBA was generated only in Lithuania. Usually, WWBA is disposed of in landfills, only 26% of WWBA is used in the construction or maintenance of local roads, because of that it is useful to know properties of such WWBA and to analyse possibilities of using it in cement concrete. In the chemical composition of such WWBA type was fixed a big amount ~50% of CO2. It is known, that C retards cement hydration. Due to stabilisation this process, it was used in the same amounts catalyst waste from oil cracking (FCCCw), which could accelerate hydration processes. Oil refineries worldwide generate more than 800,000 tonnes of FCCCw per year, of which around 20% in Europe and it is the big problem to landfill. In the investigation the amount of Portland cement (5-20% by mass) was replaced by mentioned wastes and properties of fresh PCC (density, slump, flow diameter) and physical mechanical properties of hardened PCC (water absorption, capillary water absorption, ultrasound pulse velocity, density, compressive strength after 28 days and 2 years curing, SEM) were established. It was determined, that by increasing amount of waste (till 20%) the workability of concrete decreases, because used wastes had higher water requirement. The best results were obtained, when 5% of cement was replaced by WWBA. Then compressive strength after 28 days curing comparing to control sample decreased 8%, but after 2 years curing it increased 1%, also the capillary water absorption decreased, denser structure was formed. The obtained results of hardened PCC density, ultrasound pulse velocity and water absorption are similar to control samples.


Sign in / Sign up

Export Citation Format

Share Document