Multiple and non-recessive resistance to Bt proteins in a Cry2Ab2-resistant population of Helicoverpa zea

2021 ◽  
pp. 105650
Author(s):  
Fei Yang ◽  
José C. Santiago González ◽  
Graham P. Head ◽  
Paula A. Price ◽  
David L. Kerns
Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1997-2006
Author(s):  
E A Lee ◽  
P F Byrne ◽  
M D McMullen ◽  
M E Snook ◽  
B R Wiseman ◽  
...  

Abstract C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm larval growth. Using an F2 population, we found a quantitative trait locus (QTL), rem1, which accounted for 55.3% of the phenotypic variance for maysin, and a QTL, pr1, which explained 64.7% of the phenotypic variance for apimaysin. The maysin QTL did not affect apimaysin synthesis, and the apimaysin QTL did not affect maysin synthesis, suggesting that the synthesis of these closely related compounds occurs independently. The two QTLs, rem1 and pr1, were involved in a significant epistatic interaction for total flavones, suggesting that a ceiling exists governing the total possible amount of C-glycosyl flavone. The maysin and apimaysin QTLs were significant QTLs for corn earworm antibiosis, accounting for 14.1% (rem1) and 14.7% (pr1) of the phenotypic variation. An additional QTL, represented by umc85 on the short arm of chromosome 6, affected antibiosis (R2 = 15.2%), but did not affect the synthesis of the C-glycosyl flavones.


2010 ◽  
Vol 11 (1) ◽  
pp. 21 ◽  
Author(s):  
Thomas P. Kuhar ◽  
James F. Walgenbach ◽  
Hélène B. Doughty

Chlorantraniliprole (=Rynaxypyr) is a novel anthranilic diamide insecticide that is of interest to vegetable growers because of its low mammalian toxicity and systemic properties. Field trials were conducted between 2006 and 2008 in North Carolina and Virginia to test the efficacy of chlorantraniliprole as a drip chemigation treatment on tomatoes. Drip chemigation of chlorantraniliprole at various rates and intervals significantly reduced the percentage of tomatoes damaged by tomato fruitworm (Helicoverpa zea) comparable to that typically achieved from multiple foliar applications of insecticides. The best control was achieved with two applications of chlorantraniliprole at 0.074 kg ai/ha, or a single application at 0.099 kg ai/ha. Residual ingestion bioassays showed that chlorantraniliprole was effectively taken up by the roots and was active in leaves up to 66 days after treatment (DAT), active in blossoms up to 22 DAT, but was not active in fruit. Drip chemigation of chlorantraniliprole may offer several advantages over foliar applications, including ease of application, reduced pesticide input into the environment, reduced worker exposure to pesticides, and reduced risk to beneficial arthropods. Accepted for publication 14 January 2010. Published 7 April 2010.


Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 710-717 ◽  
Author(s):  
Pei Zhang ◽  
Han Wu ◽  
Hongle Xu ◽  
Yuan Gao ◽  
Wei Zhang ◽  
...  

Italian ryegrass has invaded wheat fields in China and is becoming a predominant, troublesome weed. Fenoxaprop-P-ethyl has been widely used for weed control on Chinese farms since the 1990s. However, overuse has led to fenoxaprop-P-ethyl resistance in Italian ryegrass in Chinese wheat fields. In this study, we identified a putative fenoxaprop-P-ethyl–resistant population of Italian ryegrass, HZYC-6, from Henan province, China. Mutations involving Asp-2078-Gly and Ile-1781-Leu substitutions were identified in the carboxyl-transferase domain of acetyl-coenzyme A carboxylase in this population, and these mutations are the likely cause of the target site–based resistance to fenoxaprop-P-ethyl. In addition, we identified cytochrome P450–mediated metabolism of herbicides (non–target site based resistance) in the HZYC-6 population, indicating that multiple mechanisms of resistance may be segregating in this population. Furthermore, HZYC-6 was also highly resistant to haloxyfop-R-methyl and quizalofop-P-ethyl, moderately resistant to clodinafop-propargyl and sethoxydim, and had low resistance to clethodim and pinoxaden.


Sign in / Sign up

Export Citation Format

Share Document