Map-based zonal dosage strategy to control yellow spider mite (Eotetranychus carpini) and leafhoppers (Empoasca vitis & Jacobiasca lybica) in vineyards

2021 ◽  
pp. 105690
Author(s):  
Carla Román ◽  
Jaume Arnó ◽  
Santiago Planas
Keyword(s):  
ENTOMON ◽  
2020 ◽  
Vol 45 (1) ◽  
pp. 81-86
Author(s):  
Mohammad Yosof Amini ◽  
Ahamad Shah Mohammadi ◽  
Srinivasa N ◽  
Onkarappa S

False spider mites are serious pests of pomegranate and frequently cause considerable economic losses in other fruit crops as well. A field experiment conducted to evaluate eleven acaricides against Tenuipalpus aboharensis infesting pomegranate plants, revealed that wettable sulphur at 2.5 g and dicofol at 2.5 ml per litre were very effective and other acaricides viz. propargite, fenpyroximate, chlorfenapyr and buprofezin were also found effective against T. aboharensis.


2021 ◽  
Vol 9 (6) ◽  
pp. 1184
Author(s):  
Nomfusi Ntsobi ◽  
Morris Fanadzo ◽  
Marilize Le Roes-Hill ◽  
Felix Nchu

Globally, fungal inocula are being explored as agents for the optimization of composting processes. This research primarily evaluates the effects of inoculating organic vegetable heaps with the entomopathogenic fungus Clonostachys rosea f. catenula (Hypocreales) on the biophysicochemical properties of the end-product of composting. Six heaps of fresh cabbage (Brassica oleracea var. capitata) waste were inoculated with C. rosea f. catenula conidia and another six were not exposed to the fungus. The composted materials from the fungus- and control-treated heaps were subsequently used as a medium to cultivate tomatoes (Solanum lycopersicum). The biophysicochemical characteristics of the composted materials were also assessed after composting. In addition, the protective effect of the fungal inoculum against red spider mite (Tetranychus urticae) infestations in the tomatoes was evaluated through the determination of conidial colonization of the plant tissue and the number of plants infested by the insect. Furthermore, phytotoxicity tests were carried out post experiment. There were few significant variations (p < 0.05) in heap temperature or moisture level between treatments based on the weekly data. We found no significant differences in the levels of compost macronutrient and micronutrient constituents. Remarkably, the composted materials, when incorporated into a growth medium from fungus-treated heaps, induced a 100% endophytic tissue colonization in cultivated tomato plants. While fewer red spider mite infestations were observed in tomato plants grown in composted materials from fungus-treated heaps, the difference was not significant (χ2 = 0.96 and p = 0.32). The fungal treatment yielded composted materials that significantly (p < 0.05) enhanced tomato seed germination, and based on the phytotoxicity test, the composted samples from the heaps exposed to the C. rosea f. catenula inoculum were not toxic to tomato seeds and seedlings. In conclusion, this study showed that C. rosea f. catenula improved the quality of composted materials in terms of fungal endophytism and seed germination.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Kyeongnam Kim ◽  
Yong Ho Lee ◽  
Gayoung Kim ◽  
Byung-Ho Lee ◽  
Jeong-Oh Yang ◽  
...  

Abstract Two spotted spider mite, Tetranychus urticae, is a polyphagous pest to a variety of plants and they are hard to be controlled due to occurrence of resistance to acaricides. In this study, biochemical evaluation after ethyl formate (EF) and phosphine (PH3) fumigation towards T. urticae might help officials to control them in quarantine purposes. PH3 fumigation controlled eggs (LC50; 0.158 mg/L), nymphs (LC50; 0.030 mg/L), and adults (LC50; 0.059 mg/L) of T. urticae, and EF effectively affected nymphs (LC50; 2.826 mg/L) rather than eggs (LC50; 6.797 mg/L) and adults (LC50; 5.836 mg/L). In a longer exposure time of 20 h, PH3 fumigation was 94.2-fold more effective tool for control of T. urticae than EF fumigant. EF and PH3 inhibited cytochrome c oxidase (COX) activity differently in both nymphs and adults of T. urticae. It confirmed COX is one of target sites of these fumigants in T. urticae and COX is involved in the respiratory chain as complex IV. Molecular approaches showed that EF fumigation completely down-regulated the expression of cox11 gene at the concentration of LC10 value, while PH3 up-regulated several genes greater than twofold in T. urticae nymphs treated with the concentration of LC50 value. These increased genes by PH3 fumigation are ndufv1, atpB, para, and ace, responsible for the expression of NADH dehydrogenase [ubiquinone] flavoprotein 1, ATP synthase, and acetylcholinesterase in insects, respectively. Lipidomic analyses exhibited a significant difference between two fumigants-exposed groups and the control, especially an ion with 815.46 m/z was analyzed less than twofold in the fumigants-treated group. It was identified as PI(15:1/18:3) and it may be used as a biomarker to EF and PH3 toxicity. These findings may contribute to set an effective control strategy on T. urticae by methyl bromide alternatives such as EF and PH3 because they have shared target sites on the respiratory chain in the pest.


Sign in / Sign up

Export Citation Format

Share Document