First report of anthracnose caused by Colletotrichum karsti in lentil (Lablab purpureus)

2022 ◽  
pp. 105903
Author(s):  
Mingyan Luo ◽  
Yulan Jiang
Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 284-284 ◽  
Author(s):  
S. Mahadevakumar ◽  
K. M. Jayaramaiah ◽  
G. R. Janardhana

Lablab purpureus (L.) Sweet (Indian bean) is an important pulse crop grown in arid and semi-arid regions of India. It is one of the most widely cultivated legume species and has multiple uses. During a September 2010 survey, we recorded a new leaf spot disease on L. purpureus in and around Mysore district (Karnataka state) with 40 to 80% disease incidence in 130 ha of field crop studied, which accounted for 20 to 35% estimated yield loss. The symptoms appeared as small necrotic spots on the upper leaf surface. The leaf spots were persistent under mild infection throughout the season with production of conidia in clusters on abaxial leaf surface. A Dueteromyceteous fungus was isolated from affected leaf tissues that were surface sterilized with 2% NaOCl2 solution then washed thrice, dried, inoculated on potato dextrose agar (PDA) medium, and incubated at 28 ± 2°C at 12 h alternate light and dark period for 7 days. The fungal colony with aerial mycelia interspersed with dark cushion-shaped sporodochia consists of short, compact conidiophores bearing large isodiametric, solitary, muricate, brown, globular to pear shaped conidia (29.43 to 23.92 μm). Fungal isolate was identified as Epicoccum sp. based on micro-morphological and cultural features (1). Further authenticity of the fungus was confirmed by PCR amplification of the internal transcribed spacer (ITS) region using ITS1/ITS4 universal primer. The amplified PCR product was purified, sequenced directly, and BLASTn search revealed 100% homology to Epicoccum nigrum Link. (DQ093668.1 and JX914480.1). A representative sequence of E. nigrum was deposited in GenBank (Accession No. KC568289.1). The isolated fungus was further tested for its pathogenicity on 30-day-old healthy L. purpureus plants under greenhouse conditions. A conidial suspension (106 conidia/ml) was applied as foliar spray (three replicates of 15 plants each) along with suitable controls. The plants were kept under high humidity (80%) for 5 days and at ambient temperature (28 ± 2°C). The appearance of leaf spot symptoms were observed after 25 days post inoculation. Further, the pathogen was re-isolated and confirmed by micro-morphological characteristics. E. nigrum has been reported to cause post-harvest decay of cantaloupe in Oklahoma (2). It has also been reported as an endophyte (3). Occurrence as a pathogen on lablab bean has not been previously reported. To our knowledge, this is the first report of the occurrence of E. nigrum on L. purpureus in India causing leaf spot disease. References: (1) H. L. Barnet and B. B. Hunter. Page 150 in: Illustrated Genera of Imperfect Fungi, 1972. (2) B. D. Bruten et al. Plant Dis. 77:1060, 1993. (3) L. C. Fávaro et al. PLoS One 7(6):e36826, 2012.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 881-881 ◽  
Author(s):  
A. C. Udayashankar ◽  
S. Chandra Nayaka ◽  
S. R. Niranjana ◽  
O. S. Lund ◽  
H. S. Prakash

Lablab bean (Lablab purpureus L. Sweet) is a widely cultivated, highly drought tolerant legume vegetable crop grown in diverse environmental conditions worldwide. In India and elsewhere, the young pods are consumed as a fresh vegetable and mature dry seeds are important in the diet of people preferring vegetarian food (2). Small-holding farmers use their own saved seeds for sowing. During October 2008, L. purpureus exhibiting symptoms of stunting, mosaic, vein-banding, vein-clearing, mottling, and blisters suggestive of a viral infection were observed in and around the Mysore District of Karnataka State, India. Incidence of the disease ranged from 1 to 10% in different fields. Symptomatic leaves were collected from fields of Daripura Village, Mysore District, Karnataka. Viruses that were tested by indirect ELISA included Cucumber mosaic virus, Tobacco mosaic virus, Cowpea aphid-borne mosaic virus, Cowpea mosaic virus, Cowpea mottle virus, Southern bean mosaic virus, and Bean common mosaic virus (BCMV). Results of the ELISA tests indicated that all 28 samples collected from different fields were infected with BCMV. Examination of tissue sap from symptomatic plants by electron microscopy revealed flexuous rod-shaped particles (~750 nm long). An immunocapture-reverse transcription (IC-RT)-PCR assay employing degenerate primers for amplifying partial coat protein (CP) and 3′-UTR of potyviruses (1) yielded a ~700-bp product that was cloned and sequenced (GenBank Accession No. HM776637). Sequence identity at the nucleotide level was 96% with BCMV strain NL-7n (GenBank Accession No. GQ456169) infecting common bean from Himachal Pradesh, India. RTPCR was performed with a virus-specific primer pair (FW3-5′-GCAGTAGCACAGATGAAGGCA-3′: Rv3-5′-GGTTCTTCCGGCTTACTCATAAACAT-3′) designed to amplify 340 bp, the partial coat protein gene of BCMV. All symptomatic L. purpureus field samples and screenhouse-grown seedlings manually inoculated with infected sap were positive for BCMV infection in RT-PCR assay employing specific primers with amplification of a 340-bp product. To our knowledge, this is the first report of BCMV infecting L. purpureus in India. BCMV has also been reported in L. purpureus in Uganda (4) and Nigeria (3). Plants that were confirmed by ELISA to be infected were tagged, and from these plants, seeds were collected and pooled. Four hundred seeds were germinated and a rate of 6.5% seed transmission was determined based on symptoms, ELISA, and PCR. From December 2008 to December 2010, different L. purpureus plantings were monitored for BCMV incidence. Plants infected at different growth stages were tagged and pods were harvested from infected and healthy plants. Data from at least 100 BCMV-infected L. purpureus plants from each of 12 different fields were recorded for yield loss analysis. In terms of number of pods per plant, number of seeds per pod, and seed weight, an average as much as 40% yield loss was recorded from 12 different fields. Because seeds collected from these plants are used for subsequent plantings, these plants may act as virus reservoirs or foci of infection. References: (1) A. S. Langeveld et al. J. Gen. Virol. 72:1531, 1991. (2) M. N. Maruthi et al. Ann. Appl. Biol. 149:187, 2006. (3) O. O. Odedara et al. J. Gen. Virol. 74:322, 2008. (4) T. N. Sengooba et al. Plant Pathol. 46:95, 1997.


Plant Disease ◽  
2021 ◽  
Author(s):  
Md Aktaruzzaman ◽  
Tania Afroz ◽  
Sung Kee Hong ◽  
Byung Sup Kim ◽  
Hyo-Won Choi

Hyacinth bean (Lablab purpureus L.) is a highly proteineous legume under the family Fabaceae. It is native to Africa, cultivated throughout the world, and recently introduced vegetable in Korea. In April 2020, approximately 10 to 15% of the total harvested pods showed gray mold rot symptoms after 3–5 days of storage at 4 °C in Jeonju, Jeonbuk province, Korea. The symptoms observed were irregular, water-soaked spots become brown or gray with white hyphae were appeared on the infected pods. Diseased tissue was excised, and surface sterilized by immersing in 1% sodium hypochlorite (NaOCl) for 1 min, rinsed three times with sterilized distilled water, placed on potato dextrose agar (PDA) plates, and incubated at 20 ± 2°C for 7 days. A total of five morphologically similar fungal isolates (HBGM001 to HBGM005) were obtained from diseased samples; isolate HBGM002 and HBGM005 were selected for identification. The fungus produced initially white colonies, after 7 days it changes to gray to dark colonies with dark mycelium that sporulated abundantly on PDA at 20ºC. The conidia (n = 50) were single-celled, ellipsoid or ovoid in shape, and 6.11 to 13.9 × 4.8 to 9.4 μm in size for HBGM001 isolate and 5.81 to 14.1× 4.5 to 9.6 μm in size for HBGM005. Conidiophores (n = 15) arose solitary or in groups, straight or flexuous, septate, with an inflated basal cell brown to light brown, and measured 103 to 420× 7 to 25 μm for HBGM001 isolate and 101 to 415 × 5 to 23 μm for HBGM005 isolate. After two weeks, the fungus formed several black sclerotia (n = 20) ranging from 0.5 to 4.2 × 0.5 to 3.4 mm for HBGM001 isolate and 0.4 to 4.4 × 0.3 to 3.3 mm for HBGM005 isolate near the edge of the Petri dish. Morphological characters were consistent with those of Botrytis cinerea Pers.: Fr. (Ellis 1971). As for molecular identification, the internal transcribed spacer (ITS) and three nuclear protein-coding genes (glyceraldehydes-3-phosphate dehydrogenase gene [G3PDH], heat-shock protein 60 gene [HSP60], and DNA-dependent RNA polymerase subunit gene [RPB2]) were amplified using primer pairs ITS1/ITS4 (White et al. 1990), G3PDH-F/G3PDH-R, HSP60-F/HSP60-R, and RPB2-F/RPB2-R (Staats et al. 2005), respectively. The ITS, G3PDH, HSP60, and RPB2 sequences of HBGM002 and HBGM005 isolates (GenBank accession number MT439648 and MT968495 for ITS; MT439649 and MT968496 for G3PDH; MT439650 and MT968497 for HSP60; MT439651 and MT968498 for RPB2 respectively) were 99% to 100% identical to those of B. cinerea (KY364366, KF015583, KJ018758, and KJ018756, respectively). To determine pathogenicity, five disinfected pods were pinpricked (3 sites per pod) with sterile needles and 50 µl of conidial suspension (1 × 105 conidia/ml) was inoculated by pipetting into the wounds. An analogous five pods, serving as controls, were inoculated with sterile distilled water. All the pods were placed in a growth chamber and maintained a temperature of 20±2ºC and a relative humidity >80%. After 5 days, gray mold symptoms developed on the inoculated pods, whereas no symptoms appeared on control pods. The pathogen was re-isolated from the inoculated pods, fulfilling Koch’s postulates. B. cinerea has been reported causing gray mold in Hyacinth bean in China, Taiwan and India (Farr and Rossman 2021). To our knowledge, this is the first report of B. cinerea causing post-harvest gray mold on hyacinth bean in Korea. The disease could represent a threat for hyacinth bean post-harvest and storage and management strategies should be investigated and applied.


1988 ◽  
Vol 62 (01) ◽  
pp. 141-143 ◽  
Author(s):  
Gerard M. Thomas ◽  
George O. Poinar

A sporulating Aspergillus is described from a piece of Eocene amber originating from the Dominican Republic. The Aspergillus most closely resembles a form of the white spored phase of Aspergillus janus Raper and Thom. This is the first report of a fossil species of Aspergillus.


2005 ◽  
Vol 173 (4S) ◽  
pp. 377-378
Author(s):  
Yasunori Hiraoka ◽  
Kazuhiko Yamada ◽  
Yuji Shimizu ◽  
Hiroyuki Abe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document