scholarly journals Systems scale characterization of circadian rhythm pathway in Camellia sinensis

Author(s):  
Gagandeep Singh ◽  
Vikram Singh ◽  
Vikram Singh
2011 ◽  
Vol 98 (18) ◽  
pp. 181904 ◽  
Author(s):  
Shigetaka Tomiya ◽  
Yuya Kanitani ◽  
Shinji Tanaka ◽  
Tadakatsu Ohkubo ◽  
Kazuhiro Hono

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


2020 ◽  
Vol 29 (7) ◽  
pp. 1230-1245 ◽  
Author(s):  
Paulo N. Bernardino ◽  
Wanda De Keersmaecker ◽  
Rasmus Fensholt ◽  
Jan Verbesselt ◽  
Ben Somers ◽  
...  

2016 ◽  
Vol 33 (7) ◽  
pp. 419-437 ◽  
Author(s):  
Lidia E. Chinchilla ◽  
Carol Olmos ◽  
Mert Kurttepeli ◽  
Sara Bals ◽  
Gustaaf Van Tendeloo ◽  
...  

2017 ◽  
Vol 241 ◽  
pp. 190-199 ◽  
Author(s):  
Ning Liu ◽  
Jialiang Zhou ◽  
Lujia Han ◽  
Shuangshuang Ma ◽  
Xiaoxi Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document