Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut

2022 ◽  
pp. 104645
Author(s):  
Yun Yang ◽  
Weibing Guan ◽  
Eric Deleersnijder ◽  
Zhiguo He
Author(s):  
Yao Wu ◽  
Wei Zhang ◽  
Mingkai Guan ◽  
Huanghao Hu

In this study, the net bottom sediment transport pattern is measured and compared with flow pattern in the Pearl River Estuary (PRE). Based on 106 bottom sediment samples taken from the PRE, the spatial distribution of bottom sediment of mean grain size μ (mm), sorting coefficient σ, and skewness SK is calculated. Then the grain size trend analysis (GSTA) was used to detect the net bottom sediment transport characteristics. The bottom sediment is transported southward and southeastward in the upper part of the estuary and northward in the lower part, while a clockwise rotation trend occurs in the central part. Furthermore, a numerical flow model, based on Princeton Ocean Model (POM), is used to modulate the hydrodynamic conditions in the PRE. The simulated long-term bottom residual currents correlate well with the GSTA results, implying that the net bottom sediment transport is mainly controlled by the residual currents.


2019 ◽  
Vol 29 (4) ◽  
pp. 861-875
Author(s):  
Zeyu Zeng ◽  
William W. L. Cheung ◽  
Shiyu Li ◽  
Jiatang Hu ◽  
Ying Wang

2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen

The Pearl River Estuary (PRE) is one of the major fishing grounds for the squid Uroteuthis chinensis. Taking that into consideration, this study analyzes the environmental effects on the spatiotemporal variability of U. chinensis in the PRE, on the basis of the Generalized Additive Model (GAM) and Clustering Fishing Tactics (CFT), using satellite and in situ observations. Results show that 63.1% of the total variation in U. chinensis Catch Per Unit Effort (CPUE) in the PRE could be explained by looking into outside factors. The most important one was the interaction of sea surface temperature (SST) and month, with a contribution of 26.7%, followed by the interaction effect of depth and month, fishermen’s fishing tactics, sea surface salinity (SSS), chlorophyll a concentration (Chl a), and year, with contributions of 12.8%, 8.5%, 7.7%, 4.0%, and 3.1%, respectively. In summary, U. chinensis in the PRE was mainly distributed over areas with an SST of 22–29 °C, SSS of 32.5–34‰, Chl a of 0–0.3 mg × m−3, and water depth of 40–140 m. The distribution of U. chinensis in the PRE was affected by the western Guangdong coastal current, distribution of marine primary productivity, and variation of habitat conditions. Lower stock of U. chinensis in the PRE was connected with La Niña in 2008.


Harmful Algae ◽  
2012 ◽  
Vol 13 ◽  
pp. 10-19 ◽  
Author(s):  
Ping-Ping Shen ◽  
Ya-Nan Li ◽  
Yu-Zao Qi ◽  
Lv-Ping Zhang ◽  
Ye-Hui Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document