scholarly journals Dorsoventral Axis Formation in the Drosophila Embryo—Shaping and Transducing a Morphogen Gradient

2005 ◽  
Vol 15 (21) ◽  
pp. R887-R899 ◽  
Author(s):  
Bernard Moussian ◽  
Siegfried Roth
Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 653-661 ◽  
Author(s):  
H.K. Cheung ◽  
T.L. Serano ◽  
R.S. Cohen

The specification of cell fates along the dorsoventral axis of the Drosophila embryo is dependent on the asymmetric distribution of proteins within the egg and within the egg's outer membranes. Such asymmetries arise during oogenesis and are dependent on multiple cell-cell interactions between the developing oocyte and its neighboring somatic follicle cells. The earliest known such interaction involves the generation of a signal in the oocyte and its reception in the follicle cells lying on the dorsal surface of the oocyte at approximately stage 10 of oogenesis. Several independent lines of investigation indicate that the fs(1)K10 (K10) gene negatively regulates the synthesis of the signal in the oocyte nucleus. Here we present data that indicate that the accumulation of K10 protein in the oocyte nucleus is a multistep process involving: (1) the synthesis of K10 RNA in nurse cells, (2) the rapid transport of K10 RNA from nurse cells into the oocyte, (3) the localization of K10 RNA to the anterior margin of the oocyte, and (4) K10 protein synthesis and localization. K10 RNA is transported into the oocyte continuously beginning at approximately stage 2. This indicates a high degree of selectivity in transport, since most RNAs synthesized in stage 2 and older nurse cells are stored there until stage 11, when nurse cells donate their entire cytoplasm to the oocyte. The sequences responsible for the early (pre-stage 11) and selective transport of K10 RNA into the oocyte map to the 3' transcribed non-translated region of the gene. None of the other identified genes involved in dorsoventral axis formation are required for K10 RNA transport.(ABSTRACT TRUNCATED AT 250 WORDS)


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yin Wang ◽  
Xi Wang ◽  
Thorsten Wohland ◽  
Karuna Sampath

The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 135-148 ◽  
Author(s):  
S. Govind ◽  
L. Brennan ◽  
R. Steward

The maternal-effect gene dorsal encodes the ventral morphogen that is essential for elaboration of ventral and ventrolateral fates in the Drosophila embryo. Dorsal belongs to the rel family of transcription factors and controls asymmetric expression of zygotic genes along the dorsoventral axis. The dorsal protein is cytoplasmic in early embryos, possibly because of a direct interaction with cactus. In response to a ventral signal, dorsal protein becomes partitioned into nuclei of cleavage-stage syncytial blastoderms such that the ventral nuclei have the maximum amount of dorsal protein, and the lateral and dorsal nuclei have progressively less protein. Here we show that transgenic flies containing the dorsal cDNA, which is driven by the constitutively active hsp83 promoter, exhibits rescue of the dorsal- phenotype. Transformed lines were used to increase the level of dorsal protein. Females with dorsal levels roughly twice that of wild-type produced normal embryos, while a higher level of dorsal protein resulted in phenotypes similar to those observed for loss-of-function cactus mutations. By manipulating the cactus gene dose, we found that in contrast to a dorsal/cactus ratio of 2.5 which resulted in fully penetrant weak ventralization, a cactus/dorsal ratio of 3.0 was acceptable by the system. By manipulating dorsal levels in different cactus and dorsal group mutant backgrounds, we found that the relative amounts of ventral signal to that of the dorsal-cactus complex is important for the elaboration of the normal dorsoventral pattern. We propose that in a wild-type embryo, the activities of dorsal and cactus are not independently regulated; excess cactus activity is deployed only if a higher level of dorsal protein is available. Based on these results we discuss how the ventral signal interacts with the dorsal-cactus complex, thus forming a gradient of nuclear dorsal protein.


2008 ◽  
Vol 14 (4) ◽  
pp. 605-615 ◽  
Author(s):  
Rodrigo Nunes da Fonseca ◽  
Cornelia von Levetzow ◽  
Patrick Kalscheuer ◽  
Abidin Basal ◽  
Maurijn van der Zee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document