scholarly journals Predator Percolation, Insect Outbreaks, and Phase Polyphenism

2009 ◽  
Vol 19 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Andy M. Reynolds ◽  
Gregory A. Sword ◽  
Stephen J. Simpson ◽  
Don R. Reynolds
2018 ◽  
Vol 209 ◽  
pp. 700-711 ◽  
Author(s):  
Mihai A. Tanase ◽  
Cristina Aponte ◽  
Stéphane Mermoz ◽  
Alexandre Bouvet ◽  
Thuy Le Toan ◽  
...  

2015 ◽  
Vol 15 (21) ◽  
pp. 12139-12157 ◽  
Author(s):  
J. Joutsensaari ◽  
P. Yli-Pirilä ◽  
H. Korhonen ◽  
A. Arola ◽  
J. D. Blande ◽  
...  

Abstract. Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10–50 fold, resulting in 200–1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus, affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 715 ◽  
Author(s):  
Jennifer Cartwright

Droughts and insect outbreaks are primary disturbance processes linking climate change to tree mortality in western North America. Refugia from these disturbances—locations where impacts are less severe relative to the surrounding landscape—may be priorities for conservation, restoration, and monitoring. In this study, hypotheses concerning physical and biological processes supporting refugia were investigated by modelling the landscape controls on disturbance refugia that were identified using remotely sensed vegetation indicators. Refugia were identified at 30-m resolution using anomalies of Landsat-derived Normalized Difference Moisture Index in lodgepole and whitebark pine forests in southern Oregon, USA, in 2001 (a single-year drought with no insect outbreak) and 2009 (during a multi-year drought and severe outbreak of mountain pine beetle). Landscape controls on refugia (topographic, soil, and forest characteristics) were modeled using boosted regression trees. Landscape characteristics better explained and predicted refugia locations in 2009, when forest impacts were greater, than in 2001. Refugia in lodgepole and whitebark pine forests were generally associated with topographically shaded slopes, convergent environments such as valleys, areas of relatively low soil bulk density, and in thinner forest stands. In whitebark pine forest, refugia were associated with riparian areas along headwater streams. Spatial patterns in evapotranspiration, snowmelt dynamics, soil water storage, and drought-tolerance and insect-resistance abilities may help create refugia from drought and mountain pine beetle. Identification of the landscape characteristics supporting refugia can help forest managers target conservation resources in an era of climate-change exacerbation of droughts and insect outbreaks.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuel G. Woodman ◽  
Sacha Khoury ◽  
Ronald E. Fournier ◽  
Erik J. S. Emilson ◽  
John M. Gunn ◽  
...  

AbstractInsect defoliators alter biogeochemical cycles from land into receiving waters by consuming terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) concentrations in lake waters when defoliators covered entire catchments and reduced leaf area. DOC reductions reached 32% when deciduous stands dominated. Within-year changes in DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of 266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661 km2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeochemical cycles in forest catchments of this region.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0204316 ◽  
Author(s):  
Lionel Navarro ◽  
Anne-Élizabeth Harvey ◽  
Adam Ali ◽  
Yves Bergeron ◽  
Hubert Morin

Author(s):  
A. S. Isaev ◽  
V. V. Kiselev ◽  
T. M. Ovchinnikova

2019 ◽  
Vol 89 (3) ◽  
pp. 829-841
Author(s):  
Adam Ekholm ◽  
Ayco J. M. Tack ◽  
Pertti Pulkkinen ◽  
Tomas Roslin

2003 ◽  
Vol 29 (2) ◽  
pp. 286-297 ◽  
Author(s):  
V I Kharuk ◽  
K J Ranson ◽  
V V Kuz'michev ◽  
S T Im

Sign in / Sign up

Export Citation Format

Share Document