scholarly journals Zeta-Tubulin Is a Member of a Conserved Tubulin Module and Is a Component of the Centriolar Basal Foot in Multiciliated Cells

2015 ◽  
Vol 25 (16) ◽  
pp. 2177-2183 ◽  
Author(s):  
Erin Turk ◽  
Airon A. Wills ◽  
Taejoon Kwon ◽  
Jakub Sedzinski ◽  
John B. Wallingford ◽  
...  
2018 ◽  
Author(s):  
Quynh P.H. Nguyen ◽  
Zhen Liu ◽  
Rashmi Nanjundappa ◽  
Alexandre Megherbi ◽  
Nathalie Delgehyr ◽  
...  

AbstractMotile cilia are beating machines that play a critical role in airway defense. During airway cell differentiation, hundreds of motile cilia are templated from basal bodies that extend a basal foot, an appendage that links motile cilia together to ensure beating coordination. This assembly has thus far escaped structural analysis because its size is below the resolution limit. Here, we determine the molecular architecture and identify basal foot proteins using a super-resolution-driven approach. Quantitative super-resolution image analysis shows that the basal foot is organized in three main regions linked by elongated coiled-coil proteins. FIB-SEM tomography and comparative super-resolution mapping of basal feet reveal that, among hundreds of motile cilia of an airway cell, a hybrid cilium with features of primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells and originates from parental centrioles. We further demonstrate that this novel cilium is a signalling centre whose cellular position is dependent on flow.


Author(s):  
R.L. Pinto ◽  
R.M. Woollacott

The basal body and its associated rootlet are the organelles responsible for anchoring the flagellum or cilium in the cytoplasm. Structurally, the common denominators of the basal apparatus are the basal body, a basal foot from which microtubules or microfilaments emanate, and a striated rootlet. A study of the basal apparatus from cells of the epidermis of a sponge larva was initiated to provide a comparison with similar data on adult sponges.Sexually mature colonies of Aplysillasp were collected from Keehi Lagoon Marina, Honolulu, Hawaii. Larvae were fixed in 2.5% glutaraldehyde and 0.14 M NaCl in 0.2 M Millonig’s phosphate buffer (pH 7.4). Specimens were postfixed in 1% OsO4 in 1.25% sodium bicarbonate (pH 7.2) and embedded in epoxy resin. The larva ofAplysilla sp was previously described (as Dendrilla cactus) based on live observations and SEM by Woollacott and Hadfield.


2016 ◽  
Vol 214 (5) ◽  
pp. 571-586 ◽  
Author(s):  
Elisa Herawati ◽  
Daisuke Taniguchi ◽  
Hatsuho Kanoh ◽  
Kazuhiro Tateishi ◽  
Shuji Ishihara ◽  
...  

Multiciliated cells (MCCs) promote fluid flow through coordinated ciliary beating, which requires properly organized basal bodies (BBs). Airway MCCs have large numbers of BBs, which are uniformly oriented and, as we show here, align linearly. The mechanism for BB alignment is unexplored. To study this mechanism, we developed a long-term and high-resolution live-imaging system and used it to observe green fluorescent protein–centrin2–labeled BBs in cultured mouse tracheal MCCs. During MCC differentiation, the BB array adopted four stereotypical patterns, from a clustering “floret” pattern to the linear “alignment.” This alignment process was correlated with BB orientations, revealed by double immunostaining for BBs and their asymmetrically associated basal feet (BF). The BB alignment was disrupted by disturbing apical microtubules with nocodazole and by a BF-depleting Odf2 mutation. We constructed a theoretical model, which indicated that the apical cytoskeleton, acting like a viscoelastic fluid, provides a self-organizing mechanism in tracheal MCCs to align BBs linearly for mucociliary transport.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Munemasa Mori ◽  
Renin Hazan ◽  
Paul S. Danielian ◽  
John E. Mahoney ◽  
Huijun Li ◽  
...  

Abstract Abnormal development of multiciliated cells is a hallmark of a variety of human conditions associated with chronic airway diseases, hydrocephalus and infertility. Multiciliogenesis requires both activation of a specialized transcriptional program and assembly of cytoplasmic structures for large-scale centriole amplification that generates basal bodies. It remains unclear, however, what mechanism initiates formation of these multiprotein complexes in epithelial progenitors. Here we show that this is triggered by nucleocytoplasmic translocation of the transcription factor E2f4. After inducing a transcriptional program of centriole biogenesis, E2f4 forms apical cytoplasmic organizing centres for assembly and nucleation of deuterosomes. Using genetically altered mice and E2F4 mutant proteins we demonstrate that centriole amplification is crucially dependent on these organizing centres and that, without cytoplasmic E2f4, deuterosomes are not assembled, halting multiciliogenesis. Thus, E2f4 integrates nuclear and previously unsuspected cytoplasmic events of centriole amplification, providing new perspectives for the understanding of normal ciliogenesis, ciliopathies and cancer.


2020 ◽  
Author(s):  
Fumiko Matsukawa Usami ◽  
Masaki Arata ◽  
Dongbo Shi ◽  
Sanae Oka ◽  
Yoko Higuchi ◽  
...  

SummaryThe molecular mechanisms by which cilia orientation is coordinated within and between multiciliated cells (MCCs) is not fully understood. By observing the orientation of basal bodies (BB) in MCCs of mouse oviducts, here, we show that Celsr1, a planar cell polarity (PCP) factor involved in tissue polarity regulation, is dispensable for determining BB orientation in individual cells, whereas CAMSAP3, a microtubule minus-end regulator, is critical for this process but not for PCP. MCCs exhibit a characteristic BB orientation and microtubule gradient along the tissue axis, and these intracellular polarities were maintained in the cells lacking Celsr1, although the intercellular coordination of the polarities was partly disrupted. On the other hand, CAMSAP3 regulated the assembly of microtubules interconnecting BBs by localizing at the BBs, and its mutation led to disruption of intracellular coordination of BB orientation, but not affecting PCP factor localization. Thus, both Celsr1 and CAMSAP3 are responsible for BB orientation but in distinct ways; and therefore, their cooperation should be critical for generating functional multiciliated tissues.


2017 ◽  
Author(s):  
Csaba Verasztó ◽  
Nobuo Ueda ◽  
Luis A. Bezares-Calderón ◽  
Aurora Panzera ◽  
Elizabeth A. Williams ◽  
...  

AbstractCiliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.


Sign in / Sign up

Export Citation Format

Share Document