multiprotein complexes
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 26)

H-INDEX

47
(FIVE YEARS 4)

mBio ◽  
2021 ◽  
Author(s):  
Eike H. Junkermeier ◽  
Regine Hengge

Key findings in model organisms led to the concept of “local” signaling, challenging the dogma of a gradually increasing global intracellular c-di-GMP concentration driving the motile-sessile transition in bacteria. In our current model, bacteria dynamically combine both global and local signaling modes, in which specific DGCs and/or PDEs team up with effector/target systems in multiprotein complexes.


Physiology ◽  
2021 ◽  
Author(s):  
Florian Grahammer ◽  
Tobias B Huber ◽  
Ferruh Artunc

The mechanistic target of rapamycin (mTOR) forms two distinct intracellular multiprotein complexes that control a multitude of intracellular processes linked to metabolism, proliferation, actin cytoskeleton and survival. Recent studies have identified the importance of these complexes for transport regulation of ions and nutrients along the entire nephron. First reports could link altered activity of these complexes to certain disease entities i.e. diabetic nephropathy, AKI or hyperkalemia.


2021 ◽  
Author(s):  
Philipp Trepte ◽  
Christopher Secker ◽  
Soon Gang Choi ◽  
Julien Olivet ◽  
Eduardo Silva Ramos ◽  
...  

ABSTRACTComplementary methods are required to fully characterize all protein complexes, or the complexome, of a cell. Affinity purification coupled to mass-spectrometry (AP-MS) can identify the composition of complexes at proteome-scale. However, information on direct contacts between subunits is often lacking. In contrast, solving the 3D structure of protein complexes can provide this information, but structural biology techniques are not yet scalable for systematic, proteome-wide efforts. Here, we optimally combine two orthogonal high-throughput binary interaction assays, LuTHy and N2H, and demonstrate that their quantitative readouts can be used to differentiate direct interactions from indirect associations within multiprotein complexes. We also show that LuTHy allows accurate distance measurements between proteins in live cells and apply these findings to study the impact of the polyglutamine expansion mutation on the structurally unresolved N-terminal domain of Huntingtin. Thus, we present a new framework based on quantitative interaction assays to complement structural biology and AP-MS techniques, which should help to provide first-approximation contact maps of multiprotein complexes at proteome-scale.Graphical Abstract


2021 ◽  
Vol 203 (10) ◽  
Author(s):  
Laura Rank ◽  
Laura E. Herring ◽  
Miriam Braunstein

ABSTRACT Mycobacteria possess Mce transporters that import lipids and are thought to function analogously to ATP-binding cassette (ABC) transporters. However, whereas ABC transporters import substrates using a single solute-binding protein (SBP) to deliver a substrate to permease proteins in the membrane, mycobacterial Mce transporters have a potential for six SBPs (MceA to MceF) working with a pair of permeases (YrbEA and YrbEB), a cytoplasmic ATPase (MceG), and multiple Mce-associated membrane (Mam) and orphaned Mam (Omam) proteins to transport lipids. In this study, we used the model mycobacterium Mycobacterium smegmatis to study the requirement for individual Mce, Mam, and Omam proteins in Mce4 transport of cholesterol. All of the Mce4 and Mam4 proteins we investigated were required for cholesterol uptake. However, not all Omam proteins, which are encoded by genes outside mce loci, proved to contribute to cholesterol import. OmamA and OmamB were required for cholesterol import, while OmamC, OmamD, OmamE, and OmamF were not. In the absence of any single Mce4, Mam4, or Omam protein that we tested, the abundance of Mce4A and Mce4E declined. This relationship between the levels of Mce4A and Mce4E and these additional proteins suggests a network of interactions that assemble and/or stabilize a multiprotein Mce4 transporter complex. Further support for Mce transporters being multiprotein complexes was obtained by immunoprecipitation-mass spectrometry, in which we identified every single Mce, YrbE, MceG, Mam, and Omam protein with a role in cholesterol transport as associating with Mce4A. This study represents the first time any of these Mce4 transporter proteins has been shown to associate. IMPORTANCE How lipids travel between membranes of diderm bacteria is a challenging mechanistic question because lipids, which are hydrophobic molecules, must traverse a hydrophilic periplasm. This question is even more complex for mycobacteria, which have a unique cell envelope that is highly impermeable to molecules. A growing body of knowledge identifies Mce transporters as lipid importers for mycobacteria. Here, using protein stability experiments and immunoprecipitation-mass spectrometry, we provide evidence for mycobacterial Mce transporters existing as multiprotein complexes.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 90
Author(s):  
Claudio Brancolini ◽  
Eros Di Giorgio ◽  
Luigi Formisano ◽  
Teresa Gagliano

Understanding how an epigenetic regulator drives different cellular responses can be a tricky task. Very often, their activities are modulated by large multiprotein complexes, the composition of which is context- and time-dependent. As a consequence, experiments aimed to unveil the functions of an epigenetic regulator can provide different outcomes and conclusions, depending on the circumstances. HDAC9 (histone deacetylase), an epigenetic regulator that influences different differentiating and adaptive responses, makes no exception. Since its discovery, different phenotypes and/or dysfunctions have been observed after the artificial manipulation of its expression. The cells and the microenvironment use multiple strategies to control and monitor HDAC9 activities. To date, some of the genes under HDAC9 control have been identified. However, the exact mechanisms through which HDAC9 can achieve all the different tasks so far described, remain mysterious. Whether it can assemble into different multiprotein complexes and how the cells modulate these complexes is not clearly defined. In summary, despite several cellular responses are known to be affected by HDAC9, many aspects of its network of interactions still remain to be defined.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2721
Author(s):  
Florian Perner ◽  
Scott A. Armstrong

The aberrant function of chromatin regulatory networks (epigenetics) is a hallmark of cancer promoting oncogenic gene expression. A growing body of evidence suggests that the disruption of specific chromatin-associated protein complexes has therapeutic potential in malignant conditions, particularly those that are driven by aberrant chromatin modifiers. Of note, a number of enzymatic inhibitors that block the catalytic function of histone modifying enzymes have been established and entered clinical trials. Unfortunately, many of these molecules do not have potent single-agent activity. One potential explanation for this phenomenon is the fact that those drugs do not profoundly disrupt the integrity of the aberrant network of multiprotein complexes on chromatin. Recent advances in drug development have led to the establishment of novel inhibitors of protein–protein interactions as well as targeted protein degraders that may provide inroads to longstanding effort to physically disrupt oncogenic multiprotein complexes on chromatin. In this review, we summarize some of the current concepts on the role epigenetic modifiers in malignant chromatin states with a specific focus on myeloid malignancies and recent advances in early-phase clinical trials.


Sign in / Sign up

Export Citation Format

Share Document