scholarly journals All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells

2015 ◽  
Vol 25 (21) ◽  
pp. 2878 ◽  
Author(s):  
Aaron N. Reifler ◽  
Andrew P. Chervenak ◽  
Michael E. Dolikian ◽  
Brian A. Benenati ◽  
Benjamin Y. Li ◽  
...  
2010 ◽  
Vol 27 (3-4) ◽  
pp. 91-101 ◽  
Author(s):  
LUIS PÉREZ DE SEVILLA MÜLLER ◽  
KARIN DEDEK ◽  
ULRIKE JANSSEN-BIENHOLD ◽  
ARNDT MEYER ◽  
MARIA M. KREUZBERG ◽  
...  

AbstractMammalian retinae express multiple connexins that mediate the metabolic and electrical coupling of various cell types. In retinal neurons, only connexin36, connexin45, connexin50, and connexin57 have been described so far. Here, we present an analysis of a novel retinal connexin, connexin30.2 (Cx30.2), and its regulation in the mouse retina. To analyze the expression of Cx30.2, we used a transgenic mouse line in which the coding region of Cx30.2 was replaced by lacZ reporter DNA. We detected the lacZ signal in the nuclei of neurons located in the inner nuclear layer and the ganglion cell layer (GCL). In this study, we focused on the GCL and characterized the morphology of the Cx30.2-expressing cells. Using immunocytochemistry and intracellular dye injections, we found six different types of Cx30.2-expressing ganglion cells: one type of ON-OFF, three types of OFF, and two types of ON ganglion cells; among the latter was the RGA1 type. We show that RGA1 cells were heterologously coupled to numerous displaced amacrine cells. Our results suggest that these gap junction channels may be heterotypic, involving Cx30.2 and a connexin yet unidentified in the mouse retina. Gap junction coupling can be modulated by protein kinases, a process that plays a major role in retinal adaptation. Therefore, we studied the protein kinase–induced modulation of coupling between RGA1 and displaced amacrine cells. Our data provide evidence that coupling of RGA1 cells to displaced amacrine cells is mediated by Cx30.2 and that the extent of this coupling is modulated by protein kinase C.


2015 ◽  
Vol 25 (21) ◽  
pp. 2763-2773 ◽  
Author(s):  
Aaron N. Reifler ◽  
Andrew P. Chervenak ◽  
Michael E. Dolikian ◽  
Brian A. Benenati ◽  
Benjamin Y. Li ◽  
...  

1993 ◽  
Vol 10 (5) ◽  
pp. 887-897 ◽  
Author(s):  
L. C. L. Silveira ◽  
V. H. Perry ◽  
E. S. Yamada

AbstractThe distribution of ganglion cells and displaced amacrine cells was determined in whole-mounted Aotus retinae. In contrast to diurnal simians, Aotus has only a rudimentary fovea. Ganglion cell density decreases towards the periphery at approximately the same rate along all meridians, but is 1.2–1.8 times higher in the nasal periphery when compared to temporal region at the same eccentricities. The total number of ganglion cells varied from 421,500 to 508,700. Ganglion cell density peaked at 15,000/mm2 at 0.25 mm dorsal to the fovea. The displaced amacrine cells have a shallow density gradient, their peak density in the central region is about 1500–2000/mm2 and their total number varied from 315,900 to 482,800. Comparison between ganglion cell density and areal cortical magnification factor for the primary visual cortex, area 17, shows that there is not a simple proportional representation of the ganglion cell distribution. There is an overrepresentation of the central 10 deg of the visual field in the visual cortex. The present results for Aotus and the results of a similar analysis of data from other primates indicate that the overrepresentation of the central visual field is a general feature of the visual system of primates.


1990 ◽  
Vol 4 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Ngoh Ngoh Tung ◽  
Ian G. Morgan ◽  
David Ehrlich

AbstractThe present study examines the differential effects of three excitotoxins, kainic acid (KA), N-methyl-D-aspartate (NMDA), and α-amino-2,3-amino-2,3-dihydro-5- methyl-3-oxo-4- isoxazolepropanoic acid (AMPA) on neurons within the genglion cell layer (GCL) of the chick retina. Two-day-old chicks were given a single, 5 μl, intravitreal injection of KA, NMDA, or AMPA at a range of doses. Following treatment with 40 nmol KA, there was a 21% loss of neurons in the GCL. At 200 nmol KA, the loss increased to 46%. Exposure to KA eliminated mainly small neurons of soma area 5–15μm2, and medium-sized ganglion cells of soma area 15–25μm2. Large ganglion cells (>25μ,2) remained unaffected. The vast majority of small cells were probably displaced amarcrine cells. At a does of 3000 nmol NMDA, no further loss of cells was evident. Exposure to 200 nmol AMPA resulted in a 30% loss of large and some medium-sized ganglion cells. In a further series of experiments, exposure to excitotoxin was followed by a retinal scratch, which eliminated retinal ganglion cells within the axotomized region. The results indicate that only a small proportion of displaced amacrine cells are destroyed by NMDA and AMPA, whereas virtually all displaced amarine cells are sensitive to KA. The findings of this study indicate the existence of subclasses of ganglion cells with specificity towards different types of excitatory amino acids (EAA).


2021 ◽  
Vol 15 ◽  
Author(s):  
Ashley M. Chen ◽  
Shaghauyegh S. Azar ◽  
Alexander Harris ◽  
Nicholas C. Brecha ◽  
Luis Pérez de Sevilla Müller

Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten+/– retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson’s, and Alzheimer’s diseases.


1999 ◽  
Vol 16 (3) ◽  
pp. 475-481 ◽  
Author(s):  
HAI-BIAO LI ◽  
KWOK-FAI SO ◽  
WAH CHEUK

Light-microscopic immunocytochemistry was utilized to localize the different populations of substance P-immunoreactive (SP-IR) neurons in the hamster retina. Based on observation of 2505 SP-IR neurons in transverse sections, 34% were amacrine cells whose pear-shaped or round cell bodies (7–8 μm) were situated in the inner half of the inner nuclear layer (INL) or in the inner plexiform layer (IPL), while 66% of SP-IR somata (6–20 μm) were located in the ganglion cell layer (GCL) which were interpreted to be displaced amacrine cells and retinal ganglion cells (RGCs). At least three types of SP-IR amacrine cells were identified. The SP-IR processes were distributed in strata 1, 3, and 5 with the densest plexus in stratum 5 of the inner plexiform layer. In the wholemounted retina, the SP-IR cells were found to be distributed throughout the entire retina and their mean number was estimated to be 4224 ± 76. Two experiments were performed to clarify whether any of the SP-IR neurons in the GCL were RGCs. The first experiment demonstrated the presence of SP-IR RGCs by retrogradely labeling the RGCs and subsequently staining the SP-IR cells in the retina using immunocytochemistry. The second experiment identified SP-IR central projections of RGCs to the contralateral dorsal lateral geniculate nucleus. This projection disappeared following removal of the contralateral eye. The number of SP-IR RGCs was estimated following optic nerve section. At 2 months after sectioning the optic nerve, the total number of SP-IR neurons in the GCL reduced from 4224 ± 76 to a mean of 1192 ± 139. Assuming that all SP-IR neurons in the GCL which disappeared after nerve section were RGCs, the number of SP-IR RGCs was estimated to be 3032, representing 3–4% of the total RGCs. In summary, findings of the present study provide evidence for the existence of SP-IR RGCs in the hamster retina.


1995 ◽  
Vol 12 (4) ◽  
pp. 785-792 ◽  
Author(s):  
Mohamed Bennis ◽  
Claudine Versaux-Botteri

AbstractNeurons containing catecholamine, indoleamine, and gamma-aminobutyric acid (GABA) were identified by immunohistochemistry in the chameleon retina. Tyrosine hydroxylase (TH) and serotonin (5HT) were observed mostly in two subtypes of orthotopic amacrine cells differing in their soma size and process distribution within the IPL. Some labelled cells were displaced either to the IPL (5HT) or to the GCL (TH and 5HT). A multiplicity of retinal cell types contained GABA including cones, horizontal, amacrine, and ganglion cells. Our results confirmed those obtained in the retinas of other lizards except for the presence of interstitial and displaced amacrine cells containing TH or 5HT of which this is the first report.


1997 ◽  
Vol 14 (3) ◽  
pp. 545-551 ◽  
Author(s):  
J. Nguyen-Legros ◽  
A. Simon ◽  
I. Caillé ◽  
B. Bloch

AbstractDopamine is one of the major neurotransmitters in the retina. It is released from amacrine and interplexiform cells into both inner (IPL) and outer (OPL) plexiform layers. Several dopaminergic actions are known to occur through D1 receptors (D1R) but the precise location of these receptors has not been established. An antibody that recognizes the intracytoplasmic C-terminal of the rat D1R was used to detect D1R, immunohistochemically, in rats (Wistar and RCS), mouse, hamster, and macaque monkey retinas. The OPL was heavily stained in each species, consistent with the known actions of dopamine on horizontal cells. Three to five bands were observed in the IPL, depending on species. Three were in the a sublayer, the outermost of which was close to the amacrine cell layer, and may represent the massive dopamine input to the AII rod-amacrine cells. As observed in mice, where bipolar cells are D1-immunoreactive, the band located in sublayer 3 of the IPL may contain cone-bipolar cell terminals. A band of D1R-immunoreactivity in the b sublayer of the IPL contains ON-bipolar cell terminals and a second site of interaction between dopaminergic cells and the AII amacrine cells. This sublayer was absent from the RCS rat retina, suggesting a severe impairment of the rod-driven pathway following rod degeneration in these mutant rats. Cells in the ganglion cell layer exhibited relatively heavy staining, and may be ganglion cells or displaced amacrine cells. Some extrasynaptic localizations of D1R in the retina are suggested.


2014 ◽  
Vol 25 (2) ◽  
pp. 234-244 ◽  
Author(s):  
Chizu Nakamoto ◽  
Soh-Leh Kuan ◽  
Amy S. Findlay ◽  
Elaine Durward ◽  
Zhufeng Ouyang ◽  
...  

For correct functioning of the nervous system, the appropriate number and complement of neuronal cell types must be produced during development. However, the molecular mechanisms that regulate the production of individual classes of neurons are poorly understood. In this study, we investigate the function of the thrombospondin-1–like glycoprotein, Nel (neural epidermal growth factor [EGF]-like), in the generation of retinal ganglion cells (RGCs) in chicks. During eye development, Nel is strongly expressed in the presumptive retinal pigment epithelium and RGCs. Nel overexpression in the developing retina by in ovo electroporation increases the number of RGCs, whereas the number of displaced amacrine cells decreases. Conversely, knockdown of Nel expression by transposon-mediated introduction of RNA interference constructs results in decrease in RGC number and increase in the number of displaced amacrine cells. Modifications of Nel expression levels do not appear to affect proliferation of retinal progenitor cells, but they significantly alter the progression rate of RGC differentiation from the central retina to the periphery. Furthermore, Nel protects RGCs from apoptosis during retinal development. These results indicate that Nel positively regulates RGC production by promoting their differentiation and survival during development.


Sign in / Sign up

Export Citation Format

Share Document