scholarly journals Probabilistic Models of Larval Zebrafish Behavior Reveal Structure on Many Scales

2020 ◽  
Vol 30 (1) ◽  
pp. 70-82.e4 ◽  
Author(s):  
Robert Evan Johnson ◽  
Scott Linderman ◽  
Thomas Panier ◽  
Caroline Lei Wee ◽  
Erin Song ◽  
...  
2019 ◽  
Author(s):  
Robert Evan Johnson ◽  
Scott Linderman ◽  
Thomas Panier ◽  
Caroline Lei Wee ◽  
Erin Song ◽  
...  

AbstractNervous systems have evolved to combine environmental information with internal state to select and generate adaptive behavioral sequences. To better understand these computations and their implementation in neural circuits, natural behavior must be carefully measured and quantified. Here, we collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic environment and develop models of their action selection across exploration and hunting. Zebrafish larvae swim in punctuated bouts separated by longer periods of rest called interbout intervals. We take advantage of this structure by categorizing bouts into discrete types and representing their behavior as labeled sequences of bout-types emitted over time. We then construct probabilistic models – specifically, marked renewal processes – to evaluate how bout-types and interbout intervals are selected by the fish as a function of its internal hunger state, behavioral history, and the locations and properties of nearby prey. Finally, we evaluate the models by their predictive likelihood and their ability to generate realistic trajectories of virtual fish swimming through simulated environments. Our simulations capture multiple timescales of structure in larval zebrafish behavior and expose many ways in which hunger state influences their action selection to promote food seeking during hunger and safety during satiety.


2020 ◽  
Vol 17 (6) ◽  
pp. 76-91
Author(s):  
E. D. Solozhentsev

The scientific problem of economics “Managing the quality of human life” is formulated on the basis of artificial intelligence, algebra of logic and logical-probabilistic calculus. Managing the quality of human life is represented by managing the processes of his treatment, training and decision making. Events in these processes and the corresponding logical variables relate to the behavior of a person, other persons and infrastructure. The processes of the quality of human life are modeled, analyzed and managed with the participation of the person himself. Scenarios and structural, logical and probabilistic models of managing the quality of human life are given. Special software for quality management is described. The relationship of human quality of life and the digital economy is examined. We consider the role of public opinion in the management of the “bottom” based on the synthesis of many studies on the management of the economics and the state. The bottom management is also feedback from the top management.


2016 ◽  
Author(s):  
Stewart M. Edie ◽  
◽  
Peter D. Smits ◽  
David Jablonski

2016 ◽  
Vol 51 (1) ◽  
pp. 469-484 ◽  
Author(s):  
Damien Octeau ◽  
Somesh Jha ◽  
Matthew Dering ◽  
Patrick McDaniel ◽  
Alexandre Bartel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document