scholarly journals Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies

2021 ◽  
Author(s):  
Jacqueline T. Weiss ◽  
Jeffrey M. Donlea
2015 ◽  
Vol 112 (15) ◽  
pp. 4785-4790 ◽  
Author(s):  
Daniel Bushey ◽  
Giulio Tononi ◽  
Chiara Cirelli

Sleep in Drosophila shares many features with mammalian sleep, but it remains unknown whether spontaneous and evoked activity of individual neurons change with the sleep/wake cycle in flies as they do in mammals. Here we used calcium imaging to assess how the Kenyon cells in the fly mushroom bodies change their activity and reactivity to stimuli during sleep, wake, and after short or long sleep deprivation. As before, sleep was defined as a period of immobility of >5 min associated with a reduced behavioral response to a stimulus. We found that calcium levels in Kenyon cells decline when flies fall asleep and increase when they wake up. Moreover, calcium transients in response to two different stimuli are larger in awake flies than in sleeping flies. The activity of Kenyon cells is also affected by sleep/wake history: in awake flies, more cells are spontaneously active and responding to stimuli if the last several hours (5–8 h) before imaging were spent awake rather than asleep. By contrast, long wake (≥29 h) reduces both baseline and evoked neural activity and decreases the ability of neurons to respond consistently to the same repeated stimulus. The latter finding may underlie some of the negative effects of sleep deprivation on cognitive performance and is consistent with the occurrence of local sleep during wake as described in behaving rats. Thus, calcium imaging uncovers new similarities between fly and mammalian sleep: fly neurons are more active and reactive in wake than in sleep, and their activity tracks sleep/wake history.


2007 ◽  
Vol 21 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Yunfeng Sun ◽  
Yinling Zhang ◽  
Ning He ◽  
Xufeng Liu ◽  
Danmin Miao

Abstract. Caffeine placebo expectation seems to improve vigilance and cognitive performance. This study investigated the effect of caffeine and placebo expectation on vigilance and cognitive performance during 28 h sleep deprivation. Ten healthy males volunteered to take part in the double-blind, cross-over study, which required participants to complete five treatment periods of 28 h separated by 1-week wash-out intervals. The treatments were no substance (Control); caffeine 200 mg at 00:00 (C200); placebo 200 mg at 00:00 (P200); twice caffeine 200 mg at 00:00 and 04:00 (C200-C200); caffeine 200 mg at 00:00 and placebo 200 mg at 04:00 (C200-P200). Participants were told that all capsules were caffeine and given information about the effects of caffeine to increase expectation. Vigilance was assessed by a three-letter cancellation test, cognitive functions by the continuous addition test and Stroop test, and cardiovascular regulation by heart rate and blood pressure. Tests were performed bihourly from 00:00 to 10:00 of the second day. Results indicated that C200-P200 and C200-C200 were more alert (p < .05) than Control and P200. Their cognitive functions were higher (p < .05) than Control and P200. Also, C200-P200 scored higher than C200 in the letter cancellation task (p < .05). No test showed any significant differences between C200-P200 and C200-C200. The results demonstrated that the combination of caffeine 200 mg and placebo 200 mg expectation exerted prolonged positive effects on vigilance and cognitive performance.


1999 ◽  
Author(s):  
Patricia A. LeDuc ◽  
Dean Riley ◽  
Siobhan M. Hoffman ◽  
Mary E. Brock ◽  
David Norman ◽  
...  

1995 ◽  
Author(s):  
T. L. Kelly ◽  
S. A. Gomez ◽  
D. H. Ryman ◽  
K. Schlangen
Keyword(s):  

2011 ◽  
Author(s):  
Mel Win Khaw ◽  
Michael S. Christian ◽  
Jerel E. Slaughter

Sign in / Sign up

Export Citation Format

Share Document