scholarly journals Cosmological perturbation effects on gravitational-wave luminosity distance estimates

2018 ◽  
Vol 20 ◽  
pp. 32-40 ◽  
Author(s):  
Daniele Bertacca ◽  
Alvise Raccanelli ◽  
Nicola Bartolo ◽  
Sabino Matarrese
2019 ◽  
Vol 798 ◽  
pp. 135000 ◽  
Author(s):  
Gianluca Calcagni ◽  
Sachiko Kuroyanagi ◽  
Sylvain Marsat ◽  
Mairi Sakellariadou ◽  
Nicola Tamanini ◽  
...  

Author(s):  
Ju Chen ◽  
Changshuo Yan ◽  
Youjun Lu ◽  
Yuetong Zhao ◽  
Junqiang Ge

Abstract Gravitational wave (GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if its redshift can be measured independently by electromagnetic signals. However, mergers of stellar binary black holes (BBHs) may not have electromagnetic counterparts and thus have no direct redshift measurements. These dark sirens may be still used to statistically constrain cosmological parameters by combining their GW measured luminosity distances and localization with deep redshift surveys of galaxies around it. We investigate this dark siren method to constrain cosmological parameters in details by using mock BBH and galaxy samples. We find that the Hubble constant can be well constrained with an accuracy $\lesssim 1\%$ with a few tens or more BBH mergers at redshift up to $1$ if GW observations can provide accurate estimates of its luminosity distance (with relative error of $\lesssim 0.01$) and localization ($\lesssim 0.1\mathrm{deg}^2$), though the constraint may be significantly biased if the luminosity distance and localization errors are larger. We further generate mock BBH samples, according to current constraints on BBH merger rate and the distributions of BBH properties, and find that Deci-Hertz Observatory (DO) in a half year observation period may detect about one hundred BBHs with signal-to-noise ratio $\varrho \gtrsim 30$, relative luminosity distance error $\lesssim 0.02$, and localization error $\lesssim 0.01\mathrm{deg}^2$. By applying the dark standard siren method, we find that the Hubble constant can be constrained to $\sim 0.1-1\%$ level using these DO BBHs, an accuracy comparable to the constraints obtained by using electromagnetic observations in the near future, thus it may provide insight into the Hubble tension. We also demonstrate that the constraint on the Hubble constant using this dark siren method are robust and do not depend on the choice of the prior for the properties of BBH host galaxies.


2020 ◽  
Vol 635 ◽  
pp. A120 ◽  
Author(s):  
A. Maselli ◽  
S. Marassi ◽  
M. Branchesi

Context. Coalescences of binary white dwarfs represent a copious source of information for gravitational wave interferometers operating in the decihertz band. Moreover, according to the double degenerate scenario, they have been suggested to be possible progenitors of supernovae (SNe) Type Ia events. Aims. In this paper we discuss the detectability of gravitational waves emitted by the inspiral of double white dwarfs. We focus on the constraints that can be derived on the source’s luminosity distance, and on other binary’s parameters, such as the angular momentum orientation. Methods. We explore the possibility of coincident detections of gravitational and electromagnetic signals; the latter comes from the observation of the supernova counterpart. Confirmation of the double degenerate scenario would allow one to use distances inferred in the gravitational wave channel to consistently calibrate SNe as standard candles. Results. We find that decihertz gravitational wave interferometers can measure the luminosity distance with relative accuracy better than 1% for binaries at 100 Mpc. We show how multimessenger observations can put strong constraints on the Hubble constant, which are tighter than current bounds at low redshift, and how they can potentially shed new light on the differences with early-universe measurements.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Giulia Cusin ◽  
Ruth Durrer ◽  
Irina Dvorkin

In this paper, we studied the gravitational lensing of gravitational wave events. The probability that an observed gravitational wave source has been (de-)amplified by a given amount is a detector-dependent quantity which depends on different ingredients: the lens distribution, the underlying distribution of sources and the detector sensitivity. The main objective of the present work was to introduce a semi-analytic approach to study the distribution of the magnification of a given source population observed with a given detector. The advantage of this approach is that each ingredient can be individually varied and tested. We computed the expected magnification as both a function of redshift and of the observedsource luminosity distance, which is the only quantity one can access via observation in the absence of an electromagnetic counterpart. As a case study, we then focus on the LIGO/Virgo network and on strong lensing (μ>1).


2018 ◽  
Vol 27 (02) ◽  
pp. 1850004 ◽  
Author(s):  
László Ábel Somlai ◽  
Mátyás Vasúth

In this study the effects of a nonzero cosmological constant [Formula: see text] on a quadrupole gravitational wave (GW) signal are analyzed. The linearized approximation of general relativity was used, so the perturbed metric can be written as the sum of [Formula: see text] GWs and [Formula: see text] background term, originated from [Formula: see text]. The [Formula: see text] term was also included in this study. To derive physically relevant consequences of [Formula: see text] comoving coordinates are used. In these coordinates, the equations of motion (EoMs) are not self-consistent so the result of the linearized theory has to be transformed to the FRW frame. The luminosity distance and the same order of the magnitude of frequency in accordance with the detected GWs were used to demonstrate the effects of the cosmological constant.


2018 ◽  
Vol 97 (10) ◽  
Author(s):  
Enis Belgacem ◽  
Yves Dirian ◽  
Stefano Foffa ◽  
Michele Maggiore

Sign in / Sign up

Export Citation Format

Share Document