Charged anisotropic compact star in f(R,T) gravity: A minimal geometric deformation gravitational decoupling approach

2020 ◽  
Vol 27 ◽  
pp. 100442 ◽  
Author(s):  
S.K. Maurya ◽  
Francisco Tello-Ortiz
Author(s):  
S. K. Maurya

AbstractIn this article, we have investigated a new completely deformed embedding class one solution for the compact star in the framework of charged anisotropic matter distribution. For determining of this new solution, we deformed both gravitational potentials as $$\nu ~\mapsto ~\xi +\alpha \, h(r)$$ν↦ξ+αh(r) and $$e^{-\lambda } \mapsto ~e^{-{\mu }} + \alpha \,f(r)$$e-λ↦e-μ+αf(r) by using Ovalle (Phys Lett B 788:213, 2019) approach. The gravitational deformation divides the original coupled system into two individual systems which are called the Einstein’s system and Maxwell-system (known as quasi-Einstein system), respectively. The Einstein’s system is solved by using embedding class one condition in the context of anisotropic matter distribution while the solution of Maxwell-system is determined by solving of corresponding conservation equation via assuming a well-defined ansatz for deformation function h(r). In this way, we obtain the expression for the electric field and another deformation function f(r). Moreover, we also discussed the physical validity of the solution for the coupled system by performing several physical tests. This investigation shows that the gravitational decoupling approach is a powerful methodology to generate a well-behaved solution for the compact object.


2020 ◽  
Vol 29 (06) ◽  
pp. 2050041 ◽  
Author(s):  
M. Sharif ◽  
Saadia Saba

In this paper, we explore decoupled anisotropic interior solutions for static sphere using extended gravitational decoupling technique in [Formula: see text] gravity. We choose Tolman-IV solution as the isotropic interior source describing compact spherical geometry and extend its domains to determine two anisotropic models using some physical constraints. We test physical acceptability of both models for the compact star PSRJ1416-2230 through physical parameters, energy bounds and causality condition. It is observed that both models are physically viable as well as stable. It is also found that the first star model becomes more dense at its core as compared to the second for a small increase in the coupling constant [Formula: see text].


2020 ◽  
Author(s):  
Jürgen Schaffner-Bielich
Keyword(s):  

2009 ◽  
Vol 12 (3) ◽  
pp. 1-30 ◽  
Author(s):  
Ralf Korn ◽  
Stefanie Müller
Keyword(s):  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yong-Liang Ma ◽  
Mannque Rho

AbstractTopology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the limit of large number of colors, baryons can be regarded as topological objects—skyrmions—and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying on possible “emergent” scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density n0 up to several times n0 can be fairly well described. A uniquely novel—and unorthdox—feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^{2}_{s}/c^{2} \approx 1/3$ v s 2 / c 2 ≈ 1 / 3 , with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $\gtrsim 2n_{0}$ ≳ 2 n 0 in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.


2020 ◽  
Vol 499 (4) ◽  
pp. 4961-4971
Author(s):  
Hirotaka Ito ◽  
Amir Levinson ◽  
Ehud Nakar

ABSTRACT Strong explosion of a compact star surrounded by a thick stellar wind drives a fast (>0.1c) radiation mediated shock (RMS) that propagates in the wind, and ultimately breaks out gradually once photons start escaping from the shock transition layer. In exceptionally strong or aspherical explosions, the shock velocity may even be relativistic. The properties of the breakout signal depend on the dynamics and structure of the shock during the breakout phase. Here we present, for the first time, spectra and light curves of the breakout emission of fast Newtonian and mildly relativistic shocks, that were calculated using self-consistent Monte Carlo simulations of finite RMS with radiative losses. We find a strong dependence of the νFν peak on shock velocity, ranging from ∼1 keV for vs/c = 0.1 to ∼100 keV for vs/c = 0.5, with a shift to lower energies as losses increase. For all cases studied the spectrum below the peak exhibits a nearly flat component (Fν ∼ ν0) that extends down to the break frequency below which absorption becomes important. This implies much bright optical/ultraviolet emission than hitherto expected. The computed light curves show a gradual rise over tens to hundreds of seconds for representative conditions. The application to SN 2008D/XRT 080109 and the detectability limits are also discussed. We predict a detection rate of about one per year with eROSITA.


Author(s):  
G Sanjurjo-Ferrín ◽  
J M Torrejón ◽  
K Postnov ◽  
L Oskinova ◽  
J J Rodes-Roca ◽  
...  

Abstract Cen X-3 is a compact high mass X-ray binary likely powered by Roche lobe overflow. We present a phase-resolved X-ray spectral and timing analysis of two pointed XMM-Newton observations. The first one took place during a normal state of the source, when it has a luminosity LX ∼ 1036 erg s−1. This observation covered orbital phases φ = 0.00 − 0.37, i.e. the egress from the eclipse. The egress lightcurve is highly structured, showing distinctive intervals. We argue that different intervals correspond to the emergence of different emitting structures. The lightcurve analysis enables us to estimate the size of such structures around the compact star, the most conspicuous of which has a size ∼0.3R*, of the order of the Roche lobe radius. During the egress, the equivalent width of Fe emission lines, from highly ionized species, decreases as the X-ray continuum grows. On the other hand, the equivalent width of the Fe Kα line, from near neutral Fe, strengthens. This line is likely formed due to the X-ray illumination of the accretion stream. The second observation was taken when the source was 10 times X-ray brighter and covered the orbital phases φ = 0.36 − 0.80. The X-ray lightcurve in the high state shows dips. These dips are not caused by absorption but can be due to instabilities in the accretion stream. The typical dip duration, of about 1000 s, is much longer than the timescale attributed to the accretion of the clumpy stellar wind of the massive donor star, but is similar to the viscous timescale at the inner radius of the accretion disk.


Sign in / Sign up

Export Citation Format

Share Document