anisotropic solution
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Baiju Dayanandan ◽  
T. T. Smitha ◽  
Sunil Maurya

Abstract This paper addresses a new gravitationally decoupled anisotropic solution for the compact star model via the minimal geometric deformation (MGD) approach. We consider a non-singular well-behaved gravitational potential corresponding to the radial component of the seed spacetime and embedding class I condition that determines the temporal metric function to solve the seed system completely. However, two different well-known mimic approaches such as pr = Θ1 1 and ρ = Θ0 0 have been employed to determine the deformation function which gives the solution of the second system corresponding to the extra source. In order to test the physical viability of the solution, we have checked several conditions such as regularity conditions, energy conditions, causality conditions, hydrostatic equilibrium, etc. Moreover, the stability of the solutions has been also discussed by the adiabatic index and its critical value. We find that the solutions set seems viable as far as observational data are concerned.


2021 ◽  
Vol 36 (32) ◽  
Author(s):  
S. K. Maurya ◽  
Anirudh Pradhan ◽  
Ayan Banerjee ◽  
Francisco Tello-Ortiz ◽  
M. K. Jasim

In astronomy, the study of compact stellar remnants — white dwarfs, neutron stars, black holes — has attracted much attention for addressing fundamental principles of physics under extreme conditions in the core of compact objects. In a recent argument, Maurya et al. [Eur. Phys. J. C 77, 45 (2017)] have proposed an exact solution depending on a specific spacetime geometry. Here, we construct equilibrium configurations of compact stars for the same spacetime that make it interesting for modeling high density physical astronomical objects. All calculations are carried out within the framework of the five-dimensional Einstein–Gauss–Bonnet gravity. Our main interest is to explore the dependence of the physical properties of these compact stars depending on the Gauss–Bonnet coupling constant. The interior solutions have been matched to an exterior Boulware–Deser solution for [Formula: see text] spacetime. Our finding ensures that all energy conditions hold, and the speed of sound remains causal, everywhere inside the star. Moreover, we study the dynamical stability of stellar structure by taking into account the modified field equations using the theory of adiabatic radial oscillations developed by Chandrasekhar. Based on the observational data for radii and masses coming from different astronomical sources, we show that our model is compatible and physically relevant.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1015
Author(s):  
Mahmood Khalid Jasim ◽  
Sunil Kumar Maurya ◽  
Ksh. Newton Singh ◽  
Riju Nag

In this paper, we investigated a new anisotropic solution for the strange star model in the context of 5D Einstein-Gauss-Bonnet (EGB) gravity. For this purpose, we used a linear equation of state (EOS), in particular pr=βρ+γ, (where β and γ are constants) together with a well-behaved ansatz for gravitational potential, corresponding to a radial component of spacetime. In this way, we found the other gravitational potential as well as main thermodynamical variables, such as pressures (both radial and tangential) with energy density. The constant parameters of the anisotropic solution were obtained by matching a well-known Boulware-Deser solution at the boundary. The physical viability of the strange star model was also tested in order to describe the realistic models. Moreover, we studied the hydrostatic equilibrium of the stellar system by using a modified TOV equation and the dynamical stability through the critical value of the radial adiabatic index. The mass-radius relationship was also established for determining the compactness and surface redshift of the model, which increases with the Gauss-Bonnet coupling constant α but does not cross the Buchdahal limit.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Tuan Q. Do ◽  
W. F. Kao

AbstractInspired by an interesting counterexample to the cosmic no-hair conjecture found in a supergravity-motivated model recently, we propose a multi-field extension, in which two scalar fields are allowed to non-minimally couple to two vector fields, respectively. This model is shown to admit an exact Bianchi type I power-law solution. Furthermore, stability analysis based on the dynamical system method is performed to show that this anisotropic solution is indeed stable and attractive if both scalar fields are canonical. Nevertheless, if one of the two scalar fields is phantom then the corresponding anisotropic power-law inflation turns unstable as expected.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3707
Author(s):  
Artur Udalov ◽  
Denis Alikin ◽  
Andrei Kholkin

The analytical solution for the displacements of an anisotropic piezoelectric material in the uniform electric field is presented for practical use in the “global excitation mode” of piezoresponse force microscopy. The solution is given in the Wolfram Mathematica interactive program code, allowing the derivation of the expression of the piezoresponse both in cases of the anisotropic and isotropic elastic properties. The piezoresponse’s angular dependencies are analyzed using model lithium niobate and barium titanate single crystals as examples. The validity of the isotropic approximation is verified in comparison to the fully anisotropic solution. The approach developed in the paper is important for the quantitative measurements of the piezoelectric response in nanomaterials as well as for the development of novel piezoelectric materials for the sensors/actuators applications.


2020 ◽  
Author(s):  
Hiram Enrique Martínez Mateo ◽  
Francisco Javier de la Hidalga Wade ◽  
Carlos Zúñiga Islas ◽  
Mario Moreno Moreno ◽  
Joel Molina Reyes ◽  
...  

Bulk Micromachining on some stable high-index silicon substrates are ever more interesting because they are opening new possibilities for the development of novel 3D microstructures and surface nanostructures useful for diverse quantum applications. Considering crystallography-oriented etching, several mechanisms are poorly understood and hence, some experimental work leading to 3D device fabrication, are being developed and reported without analyzing the morphology evolution. For bulk micromachining, when 3D etching is developed using some anisotropic solution, the structure evolution takes place under a competition of fast-etching planes and unstable facets against slow-etching planes; according to the etchant composition, the resulting surface roughness can be considered as one of the main issues to be addressed. Wet chemical etching on (1 1 4}, (1 1 3), and (5 5 12) silicon substrates at 60°C, using aqueous KOH and KOH+IPA solutions, is realized in this work. The absolute etching rate trends and surface roughness were compared to reported data obtained from (0 0 1) silicon substrates. The overall etching mechanism is analyzed following some crystallographic rules and compared with high-index surfaces obtained from (0 0 1) silicon substrates. According to the best etching conditions achieved on this study, some novel 3D microstructures are presented.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050121
Author(s):  
M. Sharif ◽  
Aroob Naeem

In this paper, we consider a new solution to discuss the physical aspects of anisotropic compact celestial bodies in the background of [Formula: see text] theory. We take static spherically symmetric metric to describe the internal region of the stellar objects and apply the embedding class-I method to get the metric solution corresponding to a specific [Formula: see text] model. By matching the interior and exterior geometries at the boundary, we find the values of unknown constants. We check the stability and viability of the resulting solution through various parameters that include energy bounds, causality condition, Herrera’s condition, role of adiabatic index, redshift and compactness factor. The graphical interpretation is done for some particular compact star candidates, i.e. LMC X-4, Cen X-3, 4U 1820-30 and Vela X-1. We conclude that our model provides physically acceptable structure of the considered compact objects and is also stable.


2020 ◽  
Vol 64 ◽  
pp. 374-389 ◽  
Author(s):  
M. Sharif ◽  
Saadia Saba
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document