Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur—Relation with climate factors near its northern distribution limit

2013 ◽  
Vol 31 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Roberts Matisons ◽  
Didzis Elferts ◽  
Guntis Brūmelis
2015 ◽  
Vol 60 (8) ◽  
pp. 1143-1150 ◽  
Author(s):  
Radosław Puchałka ◽  
Marcin Koprowski ◽  
Julia Przybylak ◽  
Rajmund Przybylak ◽  
Henryk P. Dąbrowski

2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


Silva Fennica ◽  
2015 ◽  
Vol 49 (4) ◽  
Author(s):  
Roberts Matisons ◽  
Jānis Jansons ◽  
Juris Katrevičs ◽  
Āris Jansons

2021 ◽  
Vol 18 (12) ◽  
pp. 3539-3564
Author(s):  
Franziska Slotta ◽  
Lukas Wacker ◽  
Frank Riedel ◽  
Karl-Uwe Heußner ◽  
Kai Hartmann ◽  
...  

Abstract. The African baobab, Adansonia digitata L., has great paleoclimatological potential because of its wide distributional range and millennial length life span. However, dendroclimatological approaches are hampered by dating uncertainties due to its unique, parenchyma-dominated stem anatomy. Here, securely dated time series of annual wood increment growth and intra-ring stable isotopes of carbon and oxygen of cellulose for a baobab tree from Oman covering 1941 to 2005 were established and tested for relationships to hydroclimate variability. Precise dating with the atomic bomb peak (ABP) using highly resolved 14C measurements confirmed the annual character of the baobab's growth rings. F14C values of tree-ring cellulose were found up to 8.8 % lower than in the corresponding atmospheric CO2 for the period around the ABP, which in conjunction with a considerable autocorrelation of the δ13C series points to the incorporation of previous year's carbon contributing to the average age of intra-ring wood samples. F14C of terminal parenchyma bands, marking the tree-ring boundaries, were found to be considerably younger than their corresponding tree ring, indicating that parenchyma tissue is alive for many years, probably undergoing cell division and structural reorganization and contributing to secondary growth. In contrast to the δ13C time series, no significant autocorrelation was found in the δ18O series of tree-ring cellulose despite the enormous water storage potential of this stem-succulent tree species. Year-to-year variability in tree-ring width and stable isotope ratios revealed radial stem growth and the geochemistry of wood cellulose are influenced by fluctuations in the hydroclimate. In particular, δ18O was found to be a good climate proxy, followed by tree-ring width and δ13C. Tree-ring width and intra-ring δ18Omin correlated well with each other and with precipitation amount for the period from pre-monsoon May to the end of the monsoon season in September/October. Intra-annual stable isotope courses were found to be rather similar for both δ13C and δ18O. Years with particularly low monsoon rain were reflected by increased stable isotope values in the mid-section of intra-annual courses. Distinct patterns with low subseasonal isotope values seem indicative for years with heavy rainfall events from pre-monsoonal cyclones. Rain events from post-monsoonal cyclones may also be recorded; however, only 2 years of observation prevented a more conclusive evaluation.


2006 ◽  
Vol 1 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Nivaor Rodolfo Rigozo . ◽  
Daniel Jean Roger Nordemann . ◽  
Heitor Evangelista da Silva . ◽  
Mariza Pereira de Souza Echer . ◽  
Ezequiel Echer . ◽  
...  

2021 ◽  
Author(s):  
Saša Kostić ◽  
Wolfgang Wagner ◽  
Tom Levanič ◽  
Tzvetan Zlatanov ◽  
Ernest Goršić ◽  
...  

<p>New technologies, such as satellites and sensors, provide a wealth of new information about all ecosystems. In dendrochronological studies, all drought-related factors are of great importance for a more comprehensive understanding of associations between radial growth and water loss. Soil moisture directly reflects the wetness of immediate root surroundings, which is vital to the water uptake by trees. Owing to the advances in satellite observation systems and sensors, soil moisture (SM) can be remotely measured, opening new window in dendrochronological research.</p><p>Using the pedunculate oak (Quercus robur L.) lowland SE Europe forests dataset, which count 23 stands and more than 300 tree ring width (TRW) series, we observed reliable associations between satellite-based SM and TRW. Specifically, we observed different TRW−SM patterns based on the precipitation regime. SM in the hottest months (July and August) boosted radial growth, whereas opposite results were noted in the wettest spring months oaks that growing in wetter stands. Unlike oaks from drier and wetter stands that exhibited strong response to SM, those growing on moderately wet (optimal) stands are less sensitive to SM, making these stands optimal oak surroundings.</p><p>On the other hand, by applying a Generalized Additive Mixed Model (GAMM), we noted moderate−weak interactions between TRW series and smoothed SM timescales, with stronger deviations in extreme dry/wet years. Based on the TRW sensitivity to SM findings, which were interpreted via Pearson’s correlation technique and GAMM modeling, strong relations can be inferred, and SM can be labelled as reliable pedunculate oak driver.</p><p><strong>Keywords:</strong> Forestry, Remote sensing, Dendrochronology, Soil moisture, Pedunculate oak, GAMM</p><p><strong>Acknowledgments:</strong> This research was supported by the Science Fund of the Republic of Serbia, PROMIS, #6066697, TreeVita.</p><p><strong>Note:</strong> This contribution is a summary of a study by Kostić S, Wagner W, Orlović S, Levanič T, Zlatanov T, Goršić E, Kesić L, Matović B, Tsvetanov N, Stojanović DB. Different tree-ring width sensitivities to satellite-based soil moisture from drier, moderate and wetter pedunculate oak (Quercus robur L.) stands across a southeastern distribution margin (In press)</p>


2012 ◽  
Vol 169 (12) ◽  
pp. 2181-2191 ◽  
Author(s):  
Nivaor Rodolfo Rigozo ◽  
Cláudio Sergio Lisi ◽  
Mário Tomazello Filho ◽  
Alan Prestes ◽  
Daniel Jean Roger Nordemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document