Development of tree-ring maximum latewood density chronologies for the western Tien Shan Mountains, China: Influence of detrending method and climate response

2013 ◽  
Vol 31 (3) ◽  
pp. 192-197 ◽  
Author(s):  
Yu-jiang Yuan ◽  
Tong-wen Zhang ◽  
Wen-shou Wei ◽  
Daniel Nievergelt ◽  
Anne Verstege ◽  
...  
2010 ◽  
Vol 36 (-1) ◽  
pp. 17-22 ◽  
Author(s):  
Feng Chen ◽  
Yujiang Yuan ◽  
Wenshou Wei ◽  
Shulong Yu ◽  
Yang Li ◽  
...  

Chronology Development and Climate Response Analysis of Schrenk Spruce (Picea Schrenkiana) Tree-Ring Parameters in the Urumqi River Basin, ChinaSeven different tree-ring parameters (total tree-ring width, earlywood width, latewood width, maximum latewood density, minimum earlywood density, average earlywood density, and average latewood density) were obtained from Schrenk spruce in the Urumqi River Basin, China. The chronologies were analyzed individually and then compared with each other. The relationships between the different tree-ring parameters and climate data (Daxigou) are also presented. Earlywood-related parameters (earlywood width, minimum density, and earlywood density) were more sensitive to climate than those of latewood. Temperature (July) was found to be the most strongly related to the earlywood density. Based on the results of climate response analysis, the potential of tree-ring chronologies from this species to provide climate reconstructions in the Urumqi River Basin has been established. This study demonstrates that the use of tree-ring density data can increase the climate information obtained from tree-ring and should lead to improved paleoclimate reconstructions in Central Asian.


1994 ◽  
Vol 42 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Malcolm K. Hughes ◽  
Wu Xiangding ◽  
Shao Xuemei ◽  
Gregg M. Garfin

AbstractMay-June (MJ) and April-July (AJ) precipitation at Huashan in north-central China has been reconstructed for the period A.D. 1600 to 1988 using tree-ring density and width fromPinus armandii. MJ precipitation (based on ring width and maximum latewood density) calibrated and cross-validated against local instrumental data more strongly than AJ precipitation (based only on ring width). A major drought was reconstructed for the mid- and late 1920s, confirmed by local documentary sources. This drought (culminating in 1929) was the most severe of the 389-yr period for MJ and second most severe for AJ, after an event ending in 1683. Neither reconstruction shows much spectral power at frequencies lower than 1 in 10 yr, but both show concentrations of power between 2.1 and 2.7 yr and 3.5 to 9 yr. There are significant correlations between the two reconstructions and a regional dryness/wetness index (DW) based on documentary sources, particularly at high frequencies. These correlations are focused in the 7.6- to 7.3-, 3.8- to 3.6-, and 2.5-yr periods. Using singular spectrum analysis, quasiperiodic behavior with a period close to 7.2 yr was identified in the MJ precipitation reconstruction and in the DW index based on documents.


2011 ◽  
Vol 107 (3-4) ◽  
pp. 633-643 ◽  
Author(s):  
Feng Chen ◽  
Yu-jiang Yuan ◽  
Wen-shou Wei ◽  
Shu-long Yu ◽  
Zi-ang Fan ◽  
...  

1998 ◽  
Vol 28 (4) ◽  
pp. 566-573 ◽  
Author(s):  
Limin Xiong ◽  
Naoki Okada ◽  
Takeshi Fujiwara ◽  
Sadaaki Ohta ◽  
Jonathan G Palmer

Seven different tree-ring parameters (total ring width, earlywood width, latewood width, maximum latewood density, minimum earlywood density, average earlywood density, and average latewood density) were obtained from pink pine (Halocarpus biformis Hook.) at one chronology site in New Zealand (NZ). The chronologies were analyzed individually and then compared with each other. The relationships between the different tree-ring parameters and climate data (NZ average and local climate data) are also presented. There were more significant climate response functions in the NZ national average climate series than that of local climate data series. Earlywood-related parameters (earlywood width, minimum density, and average earlywood density) were more sensitive to climate than those of latewood. Temperature during the NZ growth season (November-March) was found to be the most strongly related to tree growth. This study demonstrates that the use of both ring width and ring density data can increase the climate information obtained from ring widths and should lead to improved paleoclimate reconstructions in New Zealand.


2017 ◽  
Vol 13 (8) ◽  
pp. 1007-1022 ◽  
Author(s):  
Rob Wilson ◽  
Rosanne D'Arrigo ◽  
Laia Andreu-Hayles ◽  
Rose Oelkers ◽  
Greg Wiles ◽  
...  

Abstract. Ring-width (RW) records from the Gulf of Alaska (GOA) have yielded a valuable long-term perspective for North Pacific changes on decadal to longer timescales in prior studies but contain a broad winter to late summer seasonal climate response. Similar to the highly climate-sensitive maximum latewood density (MXD) proxy, the blue intensity (BI) parameter has recently been shown to correlate well with year-to-year warm-season temperatures for a number of sites at northern latitudes. Since BI records are much less labour intensive and expensive to generate than MXD, such data hold great potential value for future tree-ring studies in the GOA and other regions in mid- to high latitudes. Here we explore the potential for improving tree-ring-based reconstructions using combinations of RW- and BI-related parameters (latewood BI and delta BI) from an experimental subset of samples at eight mountain hemlock (Tsuga mertensiana) sites along the GOA. This is the first study for the hemlock genus using BI data. We find that using either inverted latewood BI (LWBinv) or delta BI (DB) can improve the amount of explained temperature variance by > 10 % compared to RW alone, although the optimal target season shrinks to June–September, which may have implications for studying ocean–atmosphere variability in the region. One challenge in building these BI records is that resin extraction did not remove colour differences between the heartwood and sapwood; thus, long term trend biases, expressed as relatively warm temperatures in the 18th century, were noted when using the LWBinv data. Using DB appeared to overcome these trend biases, resulting in a reconstruction expressing 18th–19th century temperatures ca. 0.5 °C cooler than the 20th–21st centuries. This cool period agrees well with previous dendroclimatic studies and the glacial advance record in the region. Continuing BI measurement in the GOA region must focus on sampling and measuring more trees per site (> 20) and compiling more sites to overcome site-specific factors affecting climate response and using subfossil material to extend the record. Although LWBinv captures the inter-annual climate signal more strongly than DB, DB appears to better capture long-term secular trends that agree with other proxy archives in the region. Great care is needed, however, when implementing different detrending options and more experimentation is necessary to assess the utility of DB for different conifer species around the Northern Hemisphere.


Trees ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Alexander V. Kirdyanov ◽  
Eugene A. Vaganov ◽  
Malcolm K. Hughes

2020 ◽  
Author(s):  
Laia Andreu-Hayles ◽  
Rosanne D'Arrigo ◽  
Rose Oelkers ◽  
Kevin Anchukaitis ◽  
Greg Wiles ◽  
...  

<p>Tree ring-width (TRW) and Maximum Latewood Density (MXD) series have been largely used to develop high-resolution temperature reconstructions for the Northern Hemisphere. The divergence phenomenon, a weakening of the positive relationship between TRW and summer temperatures, has been observed particularly in northwestern North America chronologies. In contrast, MXD datasets have shown a more stable relationship with summer temperatures, but it is costly and labor-intensive to produce. Recently, methodological advances in image analyses have led to development of a less expensive and labor-intensive MXD proxy known as Blue Intensity (BI). Here, we compare 6 newly developed BI tree-ring chronologies of white spruce (<em>Picea glauca</em> [Moench] Voss) from high-latitude boreal forests in North America (Alaska in USA; Yukon and the Northwestern Territory in Canada), with MXD chronologies developed at the same sites. We assessed the quality of BI in relation to MXD based on mean correlation between trees, chronology reliability based on the Expressed Population Signal (EPS), spectral properties, and the strength and spatial extent of the temperature signal. Individual BI chronologies established significant correlations with summer temperatures showing a similar strength and spatial cover than MXD chronologies. Overall, the BI tree-ring data is emerging as a valuable proxy for generating high-resolution temperature spatial reconstructions over northwestern America.</p>


Sign in / Sign up

Export Citation Format

Share Document