blue intensity
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Vol 18 (24) ◽  
pp. 6393-6421
Author(s):  
Rob Wilson ◽  
Kathy Allen ◽  
Patrick Baker ◽  
Gretel Boswijk ◽  
Brendan Buckley ◽  
...  

Abstract. We evaluate a range of blue intensity (BI) tree-ring parameters in eight conifer species (12 sites) from Tasmania and New Zealand for their dendroclimatic potential, and as surrogate wood anatomical proxies. Using a dataset of ca. 10–15 trees per site, we measured earlywood maximum blue intensity (EWB), latewood minimum blue intensity (LWB), and the associated delta blue intensity (DB) parameter for dendrochronological analysis. No resin extraction was performed, impacting low-frequency trends. Therefore, we focused only on the high-frequency signal by detrending all tree-ring and climate data using a 20-year cubic smoothing spline. All BI parameters express low relative variance and weak signal strength compared to ring width. Correlation analysis and principal component regression experiments identified a weak and variable climate response for most ring-width chronologies. However, for most sites, the EWB data, despite weak signal strength, expressed strong coherence with summer temperatures. Significant correlations for LWB were also noted, but the sign of the relationship for most species is opposite to that reported for all conifer species in the Northern Hemisphere. DB results were mixed but performed better for the Tasmanian sites when combined through principal component regression methods than for New Zealand. Using the full multi-species/parameter network, excellent summer temperature calibration was identified for both Tasmania and New Zealand ranging from 52 % to 78 % explained variance for split periods (1901–1950/1951–1995), with equally robust independent validation (coefficient of efficiency = 0.41 to 0.77). Comparison of the Tasmanian BI reconstruction with a quantitative wood anatomical (QWA) reconstruction shows that these parameters record essentially the same strong high-frequency summer temperature signal. Despite these excellent results, a substantial challenge exists with the capture of potential secular-scale climate trends. Although DB, band-pass, and other signal processing methods may help with this issue, substantially more experimentation is needed in conjunction with comparative analysis with ring density and QWA measurements.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1482
Author(s):  
Yasunori Tokuoka ◽  
Keiichi Kondo ◽  
Noboru Nakaigawa ◽  
Tadashi Ishida

Tissue assays have improved our understanding of cancers in terms of the three-dimensional structures and cellular diversity of the tissue, although they are not yet well-developed. Perfusion culture and active chemical gradient formation in centimeter order are difficult in tissue assays, but they are important for simulating the metabolic functions of tissues. Using microfluidic technology, we developed an H-shaped channel device that could form a long concentration gradient of molecules in a tissue that we could then analyze based on its appearance and content. For demonstration, a cylindrical pork tissue specimen was punched and equipped in the H-shaped channel device, and both ends of the tissue were exposed to flowing distilled and blue-dyed water for 100 h. After perfusion, the tissue was removed from the H-shaped channel device and sectioned. The gradient of the blue intensity along the longitudinal direction of the tissue was measured based on its appearance and content. We confirmed that the measured gradients from the appearance and content were comparable.


IAWA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Le T. Ho ◽  
Frank M. Thomas

Abstract Wood density constitutes an integrative trait of water relations and growth. We compared the recently developed blue intensity (BI) method, which has only rarely been applied to tropical conifers, for determining wood density with anatomical analyses in studying the three rarely investigated palaeotropical pine species Pinus kesiya, P. dalatensis and P. krempfii, which co-occur in South-Central Vietnam, but differ in their distribution areas. For species comparisons, we also calculated the hydraulic conductivity of the xylem with the Hagen-Poiseuille equation and the water potential causing 50% loss of hydraulic conductivity () based on the anatomical analyses. We hypothesized (i) that the BI values are correlated with the cell wall fractions, the calculated hydraulic conductivity and the values; and (ii) that the wider occurrence of P. kesiya, which also can grow at drier sites, is reflected by higher wood density, lower hydraulic conductivity, lower (more negative) values and a smaller variation in the wood anatomical features across the years compared to the other two species. In agreement to our hypotheses, the results of the BI and the anatomical method were closely correlated, especially for sapwood, and P. kesiya exhibited features that are related to the growth at drier sites and to a higher tolerance towards drought: higher wood density and cell wall:lumen area ratios of its smaller xylem conduits, lower calculated hydraulic conductivity and more negative values. The BI method is well suitable for determining the wood density in tropical conifers. As a fast and inexpensive method, it may be used for initial screening woody species for their water transport capacity and drought resistance.


2021 ◽  
Vol 267 ◽  
pp. 107064
Author(s):  
Karen J. Heeter ◽  
Grant L. Harley ◽  
Justin T. Maxwell ◽  
Rob J. Wilson ◽  
John T. Abatzoglou ◽  
...  

2021 ◽  
Author(s):  
Rob Wilson ◽  
Kathy Allen ◽  
Patrick Baker ◽  
Sarah Blake ◽  
Gretel Boswijk ◽  
...  

Abstract. We evaluate a range of blue intensity (BI) tree-ring parameters in eight conifer species (12 sites) from Tasmania and New Zealand for their dendroclimatic potential, and as surrogate wood anatomical proxies. Using a dataset of ca. 10–15 trees per site, we measured earlywood maximum blue reflectance intensity (EWB), latewood minimum blue reflectance intensity (LWB) and the associated delta blue intensity (DB) parameter for dendrochronological analysis. No resin extraction was performed, impacting low frequency trends. Therefore, we focused only on the high frequency signal by detrending all tree-ring and climate data using a 20-year cubic smoothing spline. All BI parameters express low relative variance and weak signal strength compared to ring-width. Correlation analysis and principal component regression experiments identified a weak and variable climate response for most ring-width chronologies. However, for most sites, the EWB data, despite weak signal strength, expressed strong calibrations with summer temperatures. Significant correlations for LWB were also noted, but the sign of the relationship for most species is opposite to that reported for all conifer species in the Northern Hemisphere. DB performed well for the Tasmanian sites but explained minimal temperature variance in New Zealand. Using the full multi-species/parameter network, excellent summer temperature calibration was identified for both Tasmania and New Zealand ranging from 52 % to 78 % explained variance, with equally robust independent validation (Coefficient of Efficiency = 0.41 to 0.77). Comparison of the Tasmanian BI reconstruction with a wood anatomical reconstruction shows that these parameters record essentially the same strong high frequency summer temperature signal. Despite these excellent results, a substantial challenge exists with the capture of potential secular scale climate trends. Although DB, band-pass and other signal processing methods may help with this issue, substantially more experimentation is needed in conjunction with comparative analysis with ring density and quantitative WA measurements.


2021 ◽  
Vol 65 ◽  
pp. 125785
Author(s):  
Jesper Björklund ◽  
Marina V. Fonti ◽  
Patrick Fonti ◽  
Jan Van den Bulcke ◽  
Georg von Arx

2020 ◽  
Vol 9 (11) ◽  
pp. e9889119856
Author(s):  
Silvio de Almeida-Junior ◽  
Roberta Cristina Ribeiro Cruz ◽  
Jéssica Aline de Souza Castellane ◽  
André Afonso Marrafon ◽  
Saulo Francisco de Assis Gomes ◽  
...  

Objective: The use of natural products for diverse affections treatments is something aged, described since the man’s cradle, which made use of plants for wounds and natural disorders treatments. That said, the assignment objective is to expose the presentation of an experience report in case of an inflammatory process of bacteria origin due an acne treated with melaleuca essential oil associated with the photo dynamics therapy. Methods: For such, the specific spot to be worked on was sanitized with a cleaning solution and after it was hydrated with an invigorating solution. It was used on the spot 20 µL of melaleuca (Melaleuca aternifólia) essential oil and also it was performed a circular massage to spread the product. Over the spot was fell upon a blue intensity light (± 550nm) focusing on it. Results: After 5 minutes exhibition, edema decreased and pore closure was observed due to an absence of intense fushing, going intense to slight., edema decreased and pore closure. In brief, it is possible to say that the malaleuca essential oil association with application of photo dynamic therapy has the remedial potencial on facing inflammatory and infectious processes caused by acne. Conclusion: Lastly, the propagation of cases reports are of crucial importance, since that comparisons with the literature can lend to new therapies alternatives.


2020 ◽  
Vol 64 ◽  
pp. 125771
Author(s):  
Feng Wang ◽  
Dominique Arseneault ◽  
Étienne Boucher ◽  
Gabrielle Galipaud Gloaguen ◽  
Anne Deharte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document