Site-dependent growth responses to climate in two major tree species from tropical dry forests of southwest Ecuador

2018 ◽  
Vol 52 ◽  
pp. 11-19 ◽  
Author(s):  
Carlos I. Espinosa ◽  
J. Julio Camarero ◽  
Angel A. Gusmán
2020 ◽  
Vol 26 (6) ◽  
pp. 3552-3568 ◽  
Author(s):  
Tobias Fremout ◽  
Evert Thomas ◽  
Hannes Gaisberger ◽  
Koenraad Van Meerbeek ◽  
Jannes Muenchow ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1234
Author(s):  
Astrid Helena Huechacona-Ruiz ◽  
Juan Manuel Dupuy ◽  
Naomi B. Schwartz ◽  
Jennifer S. Powers ◽  
Casandra Reyes-García ◽  
...  

In tropical dry forests, deciduousness (i.e., leaf shedding during the dry season) is an important adaptation of plants to cope with water limitation, which helps trees adjust to seasonal drought. Deciduousness is also a critical factor determining the timing and duration of carbon fixation rates, and affecting energy, water, and carbon balance. Therefore, quantifying deciduousness is vital to understand important ecosystem processes in tropical dry forests. The aim of this study was to map tree species deciduousness in three types of tropical dry forests along a precipitation gradient in the Yucatan Peninsula using Sentinel-2 imagery. We propose an approach that combines reflectance of visible and near-infrared bands, normalized difference vegetation index (NDVI), spectral unmixing deciduous fraction, and several texture metrics to estimate the spatial distribution of tree species deciduousness. Deciduousness in the study area was highly variable and decreased along the precipitation gradient, while the spatial variation in deciduousness among sites followed an inverse pattern, ranging from 91.5 to 43.3% and from 3.4 to 9.4% respectively from the northwest to the southeast of the peninsula. Most of the variation in deciduousness was predicted jointly by spectral variables and texture metrics, but texture metrics had a higher exclusive contribution. Moreover, including texture metrics as independent variables increased the variance of deciduousness explained by the models from R2 = 0.56 to R2 = 0.60 and the root mean square error (RMSE) was reduced from 16.9% to 16.2%. We present the first spatially continuous deciduousness map of the three most important vegetation types in the Yucatan Peninsula using high-resolution imagery.


Author(s):  
Yule Roberta Ferreira Nunes ◽  
Giovana Rodrigues da Luz ◽  
Llian de Lima Brag

2018 ◽  
Author(s):  
Luis Daniel Avila Cabadilla ◽  
Mariana Álvarez

1990 ◽  
Vol 20 (9) ◽  
pp. 1479-1484 ◽  
Author(s):  
F. A. Bazzaz ◽  
J. S. Coleman ◽  
S. R. Morse

We examined how elevated CO2 affected the growth of seven co-occurring tree species: American beech (Fagusgrandifolia Ehrh.), paper birch (Betulapapyrifera Marsh.), black cherry (Prunusserotina Ehrh.), white pine (Pinusstrobus L.), red maple (Acerrubrum L.), sugar maple (Acersaccharum Marsh.), and eastern hemlock (Tsugacanadensis (L.) Carr). We also tested whether the degree of shade tolerance of species and the age of seedlings affected plant responses to enhanced CO2 levels. Seedlings that were at least 1 year old, for all species except beech, were removed while dormant from Harvard Forest, Petersham, Massachusetts. Seeds of red maple and paper birch were obtained from parent trees at Harvard Forest, and seeds of American beech were obtained from a population of beeches in Nova Scotia. Seedlings and transplants were grown in one of four plant growth chambers for 60 d (beech, paper birch, red maple, black cherry) or 100 d (white pine, hemlock, sugar maple) under CO2 levels of 400 or 700 μL•L−1. Plants were then harvested for biomass and growth determinations. The results showed that the biomass of beech, paper birch, black cherry, sugar maple, and hemlock significantly increased in elevated CO2, but the biomass of red maple and white pine only marginally increased in these conditions. Furthermore, there were large differences in the magnitude of growth enhancement by increased levels of CO2 between species, so it seems reasonable to predict that one consequence of rising levels of CO2 may be to increase the competitive ability of some species relative to others. Additionally, the three species exhibiting the largest increase in growth with increased CO2 concentrations were the shade-tolerant species (i.e., beech, sugar maple, and hemlock). Thus, elevated CO2 levels may enhance the growth of relatively shade-tolerant forest trees to a greater extent than growth of shade-intolerant trees, at least under the light and nutrient conditions of this experiment. We found no evidence to suggest that the age of tree seedlings greatly affected their response to elevated CO2 concentrations.


2021 ◽  
Author(s):  
Bonnie G. Waring ◽  
Mark E. De Guzman ◽  
Dan V. Du ◽  
Juan M. Dupuy ◽  
Maga Gei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document