Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors

Desalination ◽  
2005 ◽  
Vol 174 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Yao-Zhong Li ◽  
Yan-Ling He ◽  
Yong-Hong Liu ◽  
Shu-Cheng Yang ◽  
Guo-Jun Zhang
1987 ◽  
Vol 19 (3-4) ◽  
pp. 471-482 ◽  
Author(s):  
W. J. Weber ◽  
B. E. Jones ◽  
L. E. Katz

The addition of powdered activated carbon (PAC) to activated sludge treatment systems to enhance removal of specific toxic organic compounds from wastewater was evaluated. Nine organic compounds encompassing a range of solubility, volatility, biodegradability, and adsorptive properties were studied. Kate and equilibrium investigations were conducted to quantify the removal mechanisms of volatilization, biodegradation, biosorption, and carbon adsorption. Results from steady-state bioreactor studies showed that the addition of less than 100 mg/ℓ powdered activated carbon to the influent did not enhance the removal of the biodegradable target compounds investigated: benzene, toluene, ethylbenzene, o-xylene, chlorobenzene, and nitrobenzene. Significantly improved removals of the poorly degradable and non-biodegradable compounds 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, and lindane occurred at influent powdered carbon concentrations in the 12.5 to 25 mg/ℓ range. Influent powdered carbon concentrations of 100 mg/ℓ effected overall removals of greater than 90%. The addition of powdered activated carbon not only reduced effluent concentrations but also reduced the amounts of the volatile compounds stripped to the atmosphere.


2013 ◽  
Vol 5 (4) ◽  
pp. 1501-1509 ◽  
Author(s):  
Vincenzo Torretta ◽  
Giordano Urbini ◽  
Massimo Raboni ◽  
Sabrina Copelli ◽  
Paolo Viotti ◽  
...  

2012 ◽  
Vol 65 (5) ◽  
pp. 954-961 ◽  
Author(s):  
Maxime Remy ◽  
Hardy Temmink ◽  
Wim Rulkens

Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactors (MBRs). This effect was related to the formation of stronger sludge flocs, which are less sensitive to shear. In this contribution the long-term effect of PAC addition was studied by running two parallel MBRs on sewage. To one of these, PAC was dosed and a lower fouling tendency of the sludge was verified, with a 70% longer sustainable filtration time. Low PAC dosages showed additional advantages with regard to oxygen transfer and dewaterability, which may provide savings on operational costs.


Sign in / Sign up

Export Citation Format

Share Document