Selectively facilitated transport of Zn(II) through a novel polymer inclusion membrane containing Cyanex 272 as a carrier reagent

Desalination ◽  
2011 ◽  
Vol 277 (1-3) ◽  
pp. 301-307 ◽  
Author(s):  
Abdurrahman Yilmaz ◽  
Gulsin Arslan ◽  
Ali Tor ◽  
Ilker Akin
2009 ◽  
Vol 329 (1-2) ◽  
pp. 169-174 ◽  
Author(s):  
Ali Tor ◽  
Gulsin Arslan ◽  
Harun Muslu ◽  
Ahmet Celiktas ◽  
Yunus Cengeloglu ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Beata Pospiech ◽  
Adam Makowka

Abstract This work explains the application of plasticized cellulose triacetate (CTA) membranes with Cyanex 272 di(2,4,4-(trimethylpentyl)phosphinic acid) and Cyanex 301 (di(2,4,4-trimethylpentyl)dithiophosphinic acid) as the ion carriers of lanthanum(III) and cerium(III). CTA is used as a support for the preparation of polymer inclusion membrane (PIM). This membrane separates the aqueous source phase containing metal ions and the receiving phase. 1M H2SO4 is applied as the receiving phase in this process. The separation properties of the plasticized membranes with Cyanex 272 and Cyanex 301 are compared. The results show that the transport of cerium(III) through PIM with Cyanex 272 is more efficient and selective than lanthanum(III).


RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18549-18557 ◽  
Author(s):  
Canan Baslak ◽  
Gulsin Arslan ◽  
Mahmut Kus ◽  
Yunus Cengeloglu

Facilitated transport of Rhodamine B through a novel polymer inclusion membrane (PIM) containing CdTeSe Quantum Dots (QDs) as a carrier reagent has been investigated.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 285
Author(s):  
Joanna Konczyk ◽  
Wojciech Ciesielski

A facilitated transport of Pb(II) through polymer inclusion membrane (PIM) containing 1,8,15,22-tetra(1-heptyl)-calixresorcin[4]arene and its tetra- and octasubstituted derivatives containing phosphoryl, thiophosphoryl or ester groups as an ion carrier was investigated. The efficiency of Pb(II) removal from aqueous nitrate solutions was considered as a function of the composition of membrane (effect of polymer, plasticizer, and carrier), feed (effect of initial metal concentration and presence of other metal ions) and stripping phases, and temperature of the process conducting. Two kinetic models were applied for the transport description. The highest Pb(II) ions removal efficiency was obtained for the membrane with tetrathiophosphorylated heptyl-calixresorcin[4]arene as an ion carrier. The activation energy value, found from Eyring plot to be equal 38.7 ± 1.3 kJ/mol, suggests that the transport process is controllable both by diffusion and chemical reaction. The competitive transport of Pb(II) over Zn(II), Cd(II), and Cr(III) ions across PIMs under the optimal conditions was also performed. It was found that the Cr(III) ions’ presence in the feed phase disturb effective re-extraction of Pb(II) ions from membrane to stripping phase. Better stability of PIM-type than SLM-type membrane was found.


Sign in / Sign up

Export Citation Format

Share Document