Removal of Rhodamine B from water by using CdTeSe quantum dot-cellulose membrane composites

RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18549-18557 ◽  
Author(s):  
Canan Baslak ◽  
Gulsin Arslan ◽  
Mahmut Kus ◽  
Yunus Cengeloglu

Facilitated transport of Rhodamine B through a novel polymer inclusion membrane (PIM) containing CdTeSe Quantum Dots (QDs) as a carrier reagent has been investigated.

2009 ◽  
Vol 329 (1-2) ◽  
pp. 169-174 ◽  
Author(s):  
Ali Tor ◽  
Gulsin Arslan ◽  
Harun Muslu ◽  
Ahmet Celiktas ◽  
Yunus Cengeloglu ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1536 ◽  
Author(s):  
Nadavala Siva Kumar ◽  
Mohammad Asif ◽  
T. Ranjeth Kumar Reddy ◽  
Gnanendra Shanmugam ◽  
Abdelhamid Ajbar

Decoration of 2D semiconductor structures with heterogeneous metal quantum dots has attracted considerable attention due to advanced optical, electrical, and catalytic properties that result from the large surface-to-volume ratio associated with these structures. Herein, we report on silver quantum dot decorated 2D SnO2 nanoflakes for the photocatalytic abatement of water effluents, the synthesis of which was achieved through a straightforward and mild hydrothermal procedure. The photocatalysts were systematically investigated using UV–Vis, XRD, electron microscopy (SEM, HR-TEM), EDX, XPS and FTIR. The photocatalytic activity of the nanostructures was evaluated for the abatement of water pollutant rhodamine B (RhB), under light irradiation. The mild hydrothermal synthesis (100 °C) proved highly efficient for the production of large scale Ag quantum dot (QD)/SnO2 nanoflakes for a novel photocatalytic application. The decoration of SnO2 with Ag QDs significantly enhances the synergetic charge transfer, which diminishes the photo-induced electron-hole reunion. Moreover, the plasmonic effect from Ag QDs and 2D-SnO2 structures acts as an electron tank to collect the photo-induced electrons, generating a Schottky barrier between the SnO2 structures and quantum dots. Overall, this resulted in a facile and efficient degradation of RhB, with a rate double that of pristine SnO2.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 285
Author(s):  
Joanna Konczyk ◽  
Wojciech Ciesielski

A facilitated transport of Pb(II) through polymer inclusion membrane (PIM) containing 1,8,15,22-tetra(1-heptyl)-calixresorcin[4]arene and its tetra- and octasubstituted derivatives containing phosphoryl, thiophosphoryl or ester groups as an ion carrier was investigated. The efficiency of Pb(II) removal from aqueous nitrate solutions was considered as a function of the composition of membrane (effect of polymer, plasticizer, and carrier), feed (effect of initial metal concentration and presence of other metal ions) and stripping phases, and temperature of the process conducting. Two kinetic models were applied for the transport description. The highest Pb(II) ions removal efficiency was obtained for the membrane with tetrathiophosphorylated heptyl-calixresorcin[4]arene as an ion carrier. The activation energy value, found from Eyring plot to be equal 38.7 ± 1.3 kJ/mol, suggests that the transport process is controllable both by diffusion and chemical reaction. The competitive transport of Pb(II) over Zn(II), Cd(II), and Cr(III) ions across PIMs under the optimal conditions was also performed. It was found that the Cr(III) ions’ presence in the feed phase disturb effective re-extraction of Pb(II) ions from membrane to stripping phase. Better stability of PIM-type than SLM-type membrane was found.


2021 ◽  
Author(s):  
Xu Dan ◽  
Ruiyi Li ◽  
Qinsheng Wang ◽  
Yongqiang Yang ◽  
Haiyan Zhu ◽  
...  

The paper reports the synthesis of nickel-silver-graphene quantum dot-graphene hybrid. Histidine-functionalized graphene quantum dots (His-GQDs) were bonded to graphene oxide (GO) and then combined with Ni2+ and Ag+ to form...


Sign in / Sign up

Export Citation Format

Share Document