Greener synthesis of functionalized-GO incorporated TFN NF membrane for potential recovery of saline water from salt/dye mixed solution

Desalination ◽  
2022 ◽  
Vol 523 ◽  
pp. 115403
Author(s):  
Mei Qun Seah ◽  
Woei Jye Lau ◽  
Pei Sean Goh ◽  
Ahmad Fauzi Ismail
Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 302 ◽  
Author(s):  
Tatsuya Yasui ◽  
Tadashi Kaijima ◽  
Ken Nishio ◽  
Yoshimichi Hagiwara

The control of freezing saline water at the micrometer level has become very important in cryosurgery and cryopreservation of stem cells and foods. Adding antifreeze protein to saline water is a promising method for controlling the freezing because the protein produces a gap between the melting point and the freezing point. Furthermore, a synergistic effect of the solutes occurs in which the freezing point depression of a mixed solution is more noticeable than the sum of two freezing point depressions of single-solute solutions. However, the mechanism of this effect has not yet been clarified. Thus, we have carried out a molecular dynamics simulation on aqueous solutions of winter flounder antifreeze protein and sodium chloride or calcium chloride with an ice layer. The results show that the cations inhibit the hydrogen bond among water molecules not only in the salt solutions but also in the mixed solutions. This inhibition depends on the local number of ions and the valence of cations. The space for water molecules to form the hydrogen bonds becomes small in the case of the mixed solution of the protein and calcium chloride. These findings are consistent with the synergistic effect. In addition, it is found that the diffusion of ions near positively-charged residues is attenuated. This attenuation causes an increase in the possibility of water molecules staying near or inside the hydration shells of the ions. Furthermore, the first hydration shells of the cations become weak in the vicinity of the arginine, lysine and glutamic-acid residues. These factors can be considered to be possible mechanisms of the synergistic effect.


Author(s):  
Ryuichiro Oshima ◽  
Shoichiro Honda ◽  
Tetsuo Tanabe

In order to examine the origin of extra diffraction spots and streaks observed in selected area diffraction patterns of deuterium irradiated silicon, systematic diffraction experiments have been carried out by using parallel beam illumination.Disc specimens 3mm in diameter and 0.5mm thick were prepared from a float zone silicon single crystal(B doped, 7kΩm), and were chemically thinned in a mixed solution of nitric acid and hydrogen fluoride to make a small hole at the center for transmission electron microscopy. The pre-thinned samples were irradiated with deuterium ions at temperatures between 300-673K at 20keV to a dose of 1022ions/m2, and induced lattice defects were examined under a JEOL 200CX electron microscope operated at 160kV.No indication of formation of amorphous was obtained in the present experiments. Figure 1 shows an example of defects induced by irradiation at 300K with a dose of 2xl021ions/m2. A large number of defect clusters are seen in the micrograph.


Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.


Sign in / Sign up

Export Citation Format

Share Document