The impact of performing bacterial identification and antimicrobial susceptibility testing on bronchoalveolar fluid cultures 24 h a day in a microbiology laboratory

2014 ◽  
Vol 80 (3) ◽  
pp. 216-221 ◽  
Author(s):  
Hélène Pailhoriès ◽  
Carole Lemarié ◽  
Achille Kouatchet ◽  
Sigismond Lasocki ◽  
Cyril Sargentini ◽  
...  
1999 ◽  
Vol 37 (5) ◽  
pp. 1415-1418 ◽  
Author(s):  
Joan Barenfanger ◽  
Cheryl Drake ◽  
Gail Kacich

To assess the expected clinical and financial benefits of rapid reporting of microbiology results, we compared patients whose cultured samples were processed in the normal manner to patients whose samples were processed more rapidly due to a minor change in work flow. For the samples tested in the rapid-reporting time period, the vast majority of bacterial identification and antimicrobial susceptibility testing (AST) results were verified with the Vitek system on the same day that they were available. This time period was called rapid AST (RAST). For RAST, a technologist on the evening shift verified the data that became available during that shift. For the control time period, cultures were processed in the normal manner (normal AST [NAST]), which did not include evening-shift verification. For NAST, the results for approximately half of the cultures were verified on the first day that the result was available. The average turnaround time for the reporting of AST results was 39.2 h for RAST and 44.4 h for NAST (5.2 h faster for RAST [P = 0.001]). Subsequently, physicians were able to initiate appropriate antimicrobial therapy sooner for patients whose samples were tested as part of RAST (P = 0.006). The mortality rates were 7.9 and 9.6% for patients whose samples were tested as part of RAST and NAST, respectively (P = 0.45). The average length of stay was 10.7 days per patient for RAST and 12.6 days for NAST, a difference of 2.0 days less for RAST (P = 0.006). The average variable cost was $4,927 per patient for RAST and $6,677 for NAST, a difference of $1,750 less per patient for RAST (P = 0.001). This results in over $4 million in savings in variable costs per year in our hospital.


2020 ◽  
Vol 15 (16) ◽  
pp. 1595-1605
Author(s):  
Elio Cenci ◽  
Riccardo Paggi ◽  
Giuseppe V De Socio ◽  
Silvia Bozza ◽  
Barbara Camilloni ◽  
...  

Accelerate Pheno™ (ACC) is a fully automated system providing rapid identification of a panel of bacteria and yeasts, and antimicrobial susceptibility testing of common bacterial pathogens responsible for bloodstream infections and sepsis. Diagnostic accuracy for identification ranges from 87.9 to 100%, and antimicrobial susceptibility testing categorical agreement is higher than 91%. The present review includes peer-reviewed studies on ACC published to date. Both interventional and hypothetical studies evidenced the potential positive clinical role of ACC in the management and therapy of patients with bloodstream infections and sepsis, due to the important reduction in time to report, suggesting a crucial impact on the therapeutic management of these patients, provided the presence of a hospital antimicrobial stewardship program, a 24/7 laboratory operating time and a strict collaboration between clinical microbiologist and clinician. Further prospective multicenter studies are necessary to explore the impact of this system on mortality, length of stay and spread of multidrug-resistant organisms.


2020 ◽  
Vol 58 (9) ◽  
Author(s):  
Catherine Anne Hogan ◽  
Bertrand Ebunji ◽  
Nancy Watz ◽  
Kristopher Kapphahn ◽  
Joseph Rigdon ◽  
...  

ABSTRACT Clinical justification for rapid antimicrobial susceptibility testing (AST) in Gram-negative rod (GNR) bacteremia is compelling; however, evidence supporting its value is sparse. We investigated the impact of rapid AST on clinical and antimicrobial stewardship outcomes in real-world practice. We performed a before-and-after quasi-experimental study from February 2018 to July 2019 at a tertiary hospital of the 24-h/day, 7-day/week implementation of the direct Vitek 2 AST method from positive blood culture broth for GNR bacteremia with electronic isolate-specific de-escalation comments and daytime antibiotic stewardship program (ASP) intervention. The primary outcome was time to appropriate antibiotic escalation or de-escalation, and secondary outcomes included time to oral antibiotic stepdown, hospital length of stay (LOS), all-cause 30-day mortality, 7-day incidence of acute kidney injury (AKI), and 30-day incidence of Clostridioides difficile infection (CDI). A total of 671 GNR isolates were included from 643 adult patients. Among patients for whom antibiotic change occurred after rapid AST result, rapid AST was associated with a trend in decreased time to escalation or de-escalation (hazard ratio, 1.22; 95% confidence interval [CI], 0.99 to 1.51; P = 0.06), with median times of 52.3 versus 42.2 h. Secondary outcomes were similar in both groups and include median time to oral antibiotic stepdown, LOS, all-cause mortality, and incidence of AKI and CDI. Rapid AST led to improved stewardship measures but did not impact clinical patient outcomes. These results highlight that multiple variables in addition to the timing of the AST result contribute to clinical outcome and that further intervention may be required to clinically justify rapid AST implementation.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Sahil Sheth ◽  
Michael Miller ◽  
Angela Beth Prouse ◽  
Scott Baker

ABSTRACT Bloodstream infections (BSI) are associated with increased morbidity and mortality, especially when caused by Gram-negative or fungal pathogens. The objective of this study was to assess the impact of fast identification-antimicrobial susceptibility testing (ID/AST) with the Accelerate Pheno system (AXDX) from May 2018 to December 2018 on antibiotic therapy and patient outcomes. A pre-post quasiexperimental study of 200 patients (100 pre-AXDX implementation and 100 post-AXDX implementation) was conducted. The primary endpoints measured were time to first antibiotic intervention, time to most targeted antibiotic therapy, and 14-day hospital mortality. Secondary endpoints included hospital and intensive care unit (ICU) length of stay (LOS), antibiotic intensity score at 96 h, and 30-day readmission rates. Of 100 patients with Gram-negative bacteremia or candidemia in each cohort, 84 in the preimplementation group and 89 in the AXDX group met all inclusion criteria. The AXDX group had a decreased time to first antibiotic intervention (26.3 versus 8.0, P = 0.003), hours to most targeted therapy (14.4 versus 9, P = 0.03), hospital LOS (6 versus 8, P = 0.002), and average antibiotic intensity score at 96 h (16 versus 12, P = 0.002). Both groups had a comparable 14-day mortality (0% versus 3.6%, P = 0.11). In this analysis of patients with Gram-negative bacteremia or candidemia, fast ID/AST implementation was associated with decreased hospital LOS, decreased use of broad-spectrum antibiotics, shortened time to targeted therapy, and an improved utilization of antibiotics within the first 96 h of therapy.


2019 ◽  
Vol 4 (4) ◽  
pp. 144 ◽  
Author(s):  
Olga Perovic ◽  
Ali A. Yahaya ◽  
Crystal Viljoen ◽  
Jean-Bosco Ndihokubwayo ◽  
Marshagne Smith ◽  
...  

Background: In 2002, the World Health Organization (WHO) launched a regional microbiology external quality assessment (EQA) programme for national public health laboratories in the African region, initially targeting priority epidemic-prone bacterial diseases, and later including other common bacterial pathogens. Objectives: The aim of this study was to analyse the efficacy of an EQA programme as a laboratory quality system evaluation tool. Methods: We analysed the proficiency of laboratories’ performance of bacterial identification and antimicrobial susceptibility testing (AST) for the period 2011–2016. The National Institute for Communicable Diseases of South Africa provided technical coordination following an agreement with WHO, and supplied EQA samples of selected bacterial organisms for microscopy (Gram stain), identification, and antimicrobial susceptibility testing (AST). National public health laboratories, as well as laboratories involved in the Invasive Bacterial Diseases Surveillance Network, were enrolled by the WHO Regional Office for Africa to participate in the EQA programme. We analysed participants’ results of 41 surveys, which included the following organisms sent as challenges: Streptococcus pneumonia, Haemophilus influenzae, Neisseria meningitidis, Salmonella Typhi, Salmonella Enteritidis, Shigella flexneri, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus anginosus, Enterococcus faecium, Serratia marcescens, Acinetobacter baumannii, and Enterobacter cloacae. Results: Eighty-one laboratories from 45 countries participated. Overall, 76% of participants obtained acceptable scores for identification, but a substantial proportion of AST scores were not in the acceptable range. Of 663 assessed AST responses, only 42% had acceptable scores. Conclusion: In the African Region, implementation of diagnostic stewardship in clinical bacteriology is generally suboptimal. This report illustrates that AST is poorly done compared to microscopy and identification. It is critically important to make the case for implementation of quality assurance in AST, as it is the cornerstone of antimicrobial resistance surveillance reporting and implementation of the Global Antimicrobial Resistance Surveillance System.


2016 ◽  
Vol 54 (3) ◽  
pp. 516-517 ◽  
Author(s):  
Brandi M. Limbago

Bacteria in theStaphylococcus intermediusgroup, includingStaphylococcuspseudintermedius, often encodemecA-mediated methicillin resistance. Reliable detection of this phenotype for proper treatment and infection control decisions requires that these coagulase-positive staphylococci are accurately identified and specifically that they are not misidentified asS. aureus. As correct species level bacterial identification becomes more commonplace in clinical laboratories, one can expect to see changes in guidance for antimicrobial susceptibility testing and interpretation. The study by Wu et al. in this issue (M. T. Wu, C.-A. D. Burnham, L. F. Westblade, J. Dien Bard, S. D. Lawhon, M. A. Wallace, T. Stanley, E. Burd, J. Hindler, R. M. Humphries, J Clin Microbiol 54:535–542, 2016,http://dx.doi.org/10.1128/JCM.02864-15) highlights the impact of robust identification ofS. intermediusgroup organisms on the selection of appropriate antimicrobial susceptibility testing methods and interpretation.


Sign in / Sign up

Export Citation Format

Share Document