Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (a-C: H/TiC) films prepared on titanium bipolar plates in PEMFCs

2021 ◽  
pp. 108628
Author(s):  
Yan Weiqing ◽  
Zhang Yifan ◽  
Chen Lin ◽  
Luo Jun ◽  
Pang Pan ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Beibei Han ◽  
Mengyuan Yan ◽  
Dongying Ju ◽  
Maorong Chai ◽  
Susumu Sato

The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and deposition times, was prepared by the ion beam deposition (IBD) method, which has the advantage of high adhesion because of the graded interface mixes at the atomic level. The chemical characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM, AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at 0.8 V, 90 °C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4 corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a corrosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of 1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3 element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC bipolar plates.


2017 ◽  
Vol 254 ◽  
pp. 308-319 ◽  
Author(s):  
Tongkun Zhao ◽  
Jiakui Zhang ◽  
Zheng Du ◽  
Yahua Liu ◽  
Guoli Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document