scholarly journals Dataset of numerical simulations for aeroelastic control of an aero engine compressor cascade using plasma actuators

Data in Brief ◽  
2021 ◽  
pp. 107584
Author(s):  
Maria Grazia De Giorgi ◽  
Valentina Motta ◽  
Antonio Suma ◽  
Alessia Laforì
PAMM ◽  
2006 ◽  
Vol 6 (1) ◽  
pp. 457-458 ◽  
Author(s):  
Sven Schrape ◽  
Arnold Kühhorn ◽  
Mark Golze

Author(s):  
Valentina Motta ◽  
Leonie Malzacher ◽  
Dieter Peitsch ◽  
Giuseppe Quaranta

Plasma actuators may be successfully employed as virtual control surfaces, located at the trailing edge of blades, both on the pressure and on the suction side, to control the aeroelastic response of a compressor cascade. Actuators generate an induced flow against the direction of the freestream. As a result, actuating on the pressure side yields an increase in lift and nose down pitching moment, whereas the opposite is obtained by operating on the suction side. A properly phased alternate pressure/suction side actuation allows to reduce vibration and to delay the flutter onset. This paper presents the development of a linear frequency domain reduced order model for lift and pitching moment of the plasma-equipped cascade. Specifically, an equivalent thin airfoil model is used as a physically consistent basis for the model. Modifications in the geometry of the thin airfoil are generated to account for the effective chord and camber changes induced by the plasma actuators, as well as for the effects of the neighboring blades. The model reproduces and predicts correctly the mean and the unsteady loads, along with the aerodynamic damping on the plasma equipped cascade. The relationship between the parameters of the reduced order model with the flow physics is highlighted.


2010 ◽  
Vol 177 ◽  
pp. 338-341
Author(s):  
Ming Sheng Li ◽  
Yong Zhong Fan ◽  
Shu Juan Zhang

In this study, composite metastable (Ti0.49Al0.49Y0.02)N, (Ti0.44Al0.44Cr0.1Y0.02)N and (Ti0.34Al0.34Cr0.3Y0.02)N coatings were respectively deposited on a wrought martensite steel 1Cr11Ni2W2MoV for aero-engine compressor blades by arc ion plating technique with a pulse substrate bias. All the coatings have B1NaCl phase structure with a (220) preferred orientation and dense structures. The introduction of chromium into the coatings gave rise to a minute shrinkage of crystal lattice and a decrease of crystal size. Annealed at 800°C, Oxidation-resistance of the coatings improved with increased Cr content. But heat-treated at 900°C, the incorporation of Cr gave rise to obvious decrease of oxidation-resistance.


2021 ◽  
Vol 11 (19) ◽  
pp. 9248
Author(s):  
Fan Lei ◽  
Chuhua Zhang

Aero-engine core compressor preliminary design strategy has been successfully applied to the advanced design of gas turbines compressors. However, few researchers have addressed the application of the aero-engine core compressor preliminary design strategy in the preliminary optimal design of industrial process compressors. Here we embedded the aero-engine core compressor preliminary design strategy into a preliminary optimal design method, in which six types of design parameters widely used to define the aero-engine compressor configuration, i.e., aspect ratio, solidity, reaction, rotation speed, outlet axial Mach number, and inlet radius ratio, were used as the design variables. The 4-stage, 5-stage, 6-stage, and 7-stage compressor configuration with the same overall design requirements for a large-scale air separation main compressor were preliminarily optimized by the developed method, in which the 4-stage design has a stage pressure rise level of current aero-engine core compressors, whereas the 7-stage design has that of current industrial process compressors. The optimized compressor configurations were then refined with the throughflow-based detailed design method and finally verified with computational fluid dynamic simulations. It is found that the developed method can optimize design efficiency and accurately predict aerodynamic performance of compressors in a few minutes. Several design guidelines for the advanced industrial process compressors were also identified. This work is of significance in extending aero-engine core compressor design strategy to the design of advanced industrial process compressors.


Author(s):  
B. Franzelli ◽  
E. Riber ◽  
B. Cuenot ◽  
M. Ihme

Numerical simulations are regarded as an essential tool for improving the design of combustion systems since they can provide information that is complementary to experiments. However, although numerical simulations have already been successfully applied to the prediction of temperature and species concentration in turbulent flames, the production of soot is far from being conclusive due to the complexity of the processes involved in soot production. In this context, first Large Eddy Simulations (LES) of soot production in turbulent flames are reported in the literature in laboratory-scale configurations, thereby confirming the feasibility of the approach. However numerous modeling and numerical issues have not been completely solved. Moreover, validation of the models through comparisons with measurements in realistic complex flows typical of aero-engines is still rare. This work therefore proposes to evaluate the LES approach for the prediction of soot production in an experimental swirl-stabilized non-premixed ethylene/air aero-engine combustor, for which soot and flame data are available. Two simulations are carried out using a two-equation soot model to compare the performance of a hybrid chemical description (reduced chemistry for the flame structure/tabulated chemistry for soot precursor chemistry) to a classical full tabulation method. Discrepancies of soot concentration between the two LES calculations will be analyzed and the sensitivity to the chemical models will be investigated.


Author(s):  
Phillip Waniczek ◽  
Harald Schoenenborn ◽  
Peter Jeschke

The unsteady flow field during surge of the front rotor of an eight-stage axial aero engine compressor has been investigated experimentally and analytically. For that purpose, two newly designed multi-sensor probes are installed up- and downstream of the first rotor. Surge experiments are conducted at four different speed lines (75–93% speed) covering a wide range of the compressor map and measurements have been taken at two different channel heights (50% and 70% span). The results show that the flow field varies extremely during surge up- and downstream of the rotor. In contrast to the flow at the rotor leading edge, which is nearly independent of the rotor speed, the flow at the rotor trailing edge is highly dependent of the rotor speed. Therefore, the performance of the rotor during surge is dependent on the reverse through-flow of the stators. At low speeds the flow passes the stators without any changes in the flow direction. If speed is increased the reverse flow is guided more and more by the stators. These different flow conditions have a direct impact on the process of energy conversion of the rotor during the surge event. The incoming reverse flow at the rotor trailing edge impinges on the blade from the suction surface side at lower speeds and turns to the pressure surface side when speed is increased. Hence, the deviation and specific work grow. In addition to the surge experiments simulations of the surge events are conducted with a 1D code called SYSQ3D. The simulations and experiments match well and underline the capability of the new multi-sensor probes to accurately measure the flow patterns during surge.


Sign in / Sign up

Export Citation Format

Share Document