O2. The antagonism between Sox3 and Snail control cell movements to define the ectodermal/mesendodermal boundary in vertebrates

2010 ◽  
Vol 80 ◽  
pp. S6
Author(s):  
Hervé Acloque ◽  
Oscar Ocaña ◽  
M. Angela Nieto
2010 ◽  
Vol 191 (5) ◽  
pp. 1029-1041 ◽  
Author(s):  
Sayantanee Biswas ◽  
Michelle R. Emond ◽  
James D. Jontes

The protocadherins comprise the largest subgroup within the cadherin superfamily, yet their cellular and developmental functions are not well understood. In this study, we demonstrate that pcdh19 (protocadherin 19) acts synergistically with n-cadherin (ncad) during anterior neurulation in zebrafish. In addition, Pcdh19 and Ncad interact directly, forming a protein–protein complex both in vitro and in vivo. Although both molecules are required for calcium-dependent adhesion in a zebrafish cell line, the extracellular domain of Pcdh19 does not exhibit adhesive activity, suggesting that the involvement of Pcdh19 in cell adhesion is indirect. Quantitative analysis of in vivo two-photon time-lapse image sequences reveals that loss of either pcdh19 or ncad impairs cell movements during neurulation, disrupting both the directedness of cell movements and the coherence of movements among neighboring cells. Our results suggest that Pcdh19 and Ncad function together to regulate cell adhesion and to mediate morphogenetic movements during brain development.


2021 ◽  
Author(s):  
Jacob I. Mardick ◽  
Neal R. Rasmussen ◽  
Bruce Wightman ◽  
David J. Reiner

ABSTRACTRas is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutations in genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.


Sign in / Sign up

Export Citation Format

Share Document