A comparison between BMP4 and SB4 in inducing germ line gene expression pattern during embryonic stem cells differentiation

2021 ◽  
Author(s):  
Reyhaneh Sadat Hayaei Tehrani ◽  
Forough Azam Sayahpour ◽  
Fereshteh Esfandiari
2009 ◽  
Vol 38 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Michael J. Seewald ◽  
Peter Ellinghaus ◽  
Astrid Kassner ◽  
Ines Stork ◽  
Martina Barg ◽  
...  

Cardiomyocytes derived from pluripotent embryonic stem cells (ESC) have the advantage of providing a source for standardized cell cultures. However, little is known on the regulation of the genome during differentiation of ESC to cardiomyocytes. Here, we characterize the transcriptome of the mouse ESC line CM7/1 during differentiation into beating cardiomyocytes and compare the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium. We observe that the cardiac gene expression pattern of fully differentiated CM7/1-ESC is highly similar to adult primary cardiomyocytes and murine myocardium, respectively. This finding is underlined by demonstrating pharmacological effects of catecholamines and endothelin-1 on ESC-derived cardiomyocytes. Furthermore, we monitor the temporal changes in gene expression pattern during ESC differentiation with a special focus on transcription factors involved in cardiomyocyte differentiation. Thus, CM7/1-ESC-derived cardiomyocytes are a promising new tool for functional studies of cardiomyocytes in vitro and for the analysis of the transcription factor network regulating pluripotency and differentiation to cardiomyocytes.


Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4134-4141 ◽  
Author(s):  
Shi-Jiang Lu ◽  
Fei Li ◽  
Loyda Vida ◽  
George R. Honig

Abstract Gene expression patterns of CD34+CD38- cells derived from human embryonic stem cells (ESCs) were compared with those of cells isolated from adult human bone marrow (BM) using microarrays; 1692 and 1494 genes were expressed at levels at least 3-fold above background in cells from BM and ESCs, respectively. Of these, 494 showed similar levels of expression in cells from both sources, 791 genes were overexpressed in cells from BM (BM versus ESCs, at least 2-fold), and 803 genes were preferentially expressed in cells from ESCs (ESCs versus BM, at least 2-fold). The message of the flt-3 gene was markedly decreased in cells from ESCs, whereas there was substantial flt-3 expression in cells from BM. High levels of embryonic ϵ-globin expression were observed—but no adult β-globin message—in CD34+CD38- cells from ESCs, whereas high levels of β-globin expression—but no embryonic ϵ-globin message—could be detected in cells from BM. Furthermore, high levels of major histocompatibility complex (MHC) gene expression were demonstrated in cells from BM but very low levels of MHC message in corresponding cells from ESCs. These observations demonstrate that CD34+CD38- cells derived from ESCs correspond consistently to an early developmental stage at which the yolk sac and fetal liver are the primary sites of hematopoiesis.


2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Lili An ◽  
Yanming Li ◽  
Yingjun Fan ◽  
Ning He ◽  
Fanlei Ran ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S62
Author(s):  
Luis Galán Palma ◽  
Roshana Thambyrajah ◽  
Antonella Fidanza ◽  
Lesley Forrester ◽  
Pablo Menéndez ◽  
...  

1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


1994 ◽  
Vol 14 (5) ◽  
pp. 3108-3114
Author(s):  
M H Baron ◽  
S M Farrington

The zinc finger transcription factor GATA-1 is a major regulator of gene expression in erythroid, megakaryocyte, and mast cell lineages. GATA-1 binds to WGATAR consensus motifs in the regulatory regions of virtually all erythroid cell-specific genes. Analyses with cultured cells and cell-free systems have provided strong evidence that GATA-1 is involved in control of globin gene expression during erythroid differentiation. Targeted mutagenesis of the GATA-1 gene in embryonic stem cells has demonstrated its requirement in normal erythroid development. Efficient rescue of the defect requires an intact GATA element in the distal promoter, suggesting autoregulatory control of GATA-1 transcription. To examine whether GATA-1 expression involves additional regulatory factors or is maintained entirely by an autoregulatory loop, we have used a transient heterokaryon system to test the ability of erythroid factors to activate the GATA-1 gene in nonerythroid nuclei. We show here that proerythroblasts and mature erythroid cells contain a diffusible activity (TAG) capable of transcriptional activation of GATA-1 and that this activity decreases during the terminal differentiation of erythroid cells. Nuclei from GATA-1- mutant embryonic stem cells can still be reprogrammed to express their globin genes in erythroid heterokaryons, indicating that de novo induction of GATA-1 is not required for globin gene activation following cell fusion.


FEBS Letters ◽  
2017 ◽  
Vol 591 (18) ◽  
pp. 2879-2889
Author(s):  
Yuki Saito ◽  
Akira Kunitomi ◽  
Tomohisa Seki ◽  
Shugo Tohyama ◽  
Dai Kusumoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document