Identification of cytochrome P450 isoforms involved in the metabolism of Syl930, a selective S1PR 1 agonist acting as a potential therapeutic agent for autoimmune encephalitis

2017 ◽  
Vol 32 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Jiaqi Mi ◽  
Manman Zhao ◽  
Shu Yang ◽  
Yufei Jia ◽  
Yan Wang ◽  
...  
2014 ◽  
Vol 90 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Jing Jin ◽  
Jinping Hu ◽  
Wanqi Zhou ◽  
Xiaojian Wang ◽  
Qiong Xiao ◽  
...  

2008 ◽  
Vol 41 (05) ◽  
Author(s):  
E Jaquenoud-Sirot ◽  
B Knezevic ◽  
G Perla Morena ◽  
P Baumann ◽  
CB Eap

2020 ◽  
Vol 26 (36) ◽  
pp. 4675-4684 ◽  
Author(s):  
Shabierjiang Jiapaer ◽  
Takuya Furuta ◽  
Yu Dong ◽  
Tomohiro Kitabayashi ◽  
Hemragul Sabit ◽  
...  

Background: Glioblastomas (GBMs) are aggressive malignant brain tumors. Although chemotherapy with temozolomide (TMZ) can extend patient survival, most patients eventually demonstrate resistance. Therefore, novel therapeutic agents that overcome TMZ chemoresistance are required to improve patient outcomes. Purpose: Drug screening is an efficient method to find new therapeutic agents from existing drugs. In this study, we explored a novel anti-glioma agent by drug screening and analyzed its function with respect to GBM treatment for future clinical applications. Methods: Drug libraries containing 1,301 diverse chemical compounds were screened against two glioma stem cell (GSC) lines for drug candidate selection. The effect of selected agents on GSCs and glioma was estimated through viability, proliferation, sphere formation, and invasion assays. Combination therapy was performed to assess its ability to enhance TMZ cytotoxicity against GBM. To clarify the mechanism of action, we performed methylation-specific polymerase chain reaction, gelatin zymography, and western blot analysis. Results: The acyl-CoA synthetase inhibitor 2-fluoropalmitic acid (2-FPA) was selected as a candidate anti-glioma agent. 2-FPA suppressed the viability and stem-like phenotype of GSCs. It also inhibited proliferation and invasion of glioma cell lines. Combination therapy of 2-FPA with TMZ synergistically enhanced the efficacy of TMZ. 2-FPA suppressed the expression of phosphor-ERK, CD133, and SOX-2; reduced MMP-2 activity; and increased methylation of the MGMT promoter. Conclusion: 2-FPA was identified as a potential therapeutic agent against GBM. To extend these findings, physiological studies are required to examine the efficacy of 2-FPA against GBM in vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 538
Author(s):  
Alexander V. Dmitriev ◽  
Anastassia V. Rudik ◽  
Dmitry A. Karasev ◽  
Pavel V. Pogodin ◽  
Alexey A. Lagunin ◽  
...  

Drug–drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. For the creation of structure–activity relationship (SAR) models that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms (PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs mediated by these cytochromes were used as a training set. Prediction can be carried out both for known drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO CV) procedures was about 0.92. The SAR models created are publicly available as a web resource and provide predictions of DDIs mediated by the most important cytochromes P450.


Sign in / Sign up

Export Citation Format

Share Document