The in vitro effects of melatonin and Cry gene on the secretion of estradiol from camel ovarian granulosa cells

2021 ◽  
Vol 74 ◽  
pp. 106497
Author(s):  
Zhao Shu-Qin ◽  
Zhang Yong ◽  
Gao Yuan ◽  
Yang Xiao-Pu ◽  
Yang Zhen ◽  
...  
2020 ◽  
Vol 103 (3) ◽  
pp. 608-619
Author(s):  
Ping Zhong ◽  
Jin Liu ◽  
Hong Li ◽  
Senbin Lin ◽  
Lingfeng Zeng ◽  
...  

Abstract This study aimed to investigate whether cadmium (Cd) cytotoxicity in rat ovarian granulosa cells (OGCs) is mediated through apoptosis or autophagy and to determine the role of microRNAs (miRNAs) in Cd cytotoxicity. To test this hypothesis, rat OGCs were exposed to 0, 10, and 20 μM CdCl2 in vitro. As the Cd concentration increased, OGC apoptosis increased. In addition, Cd promoted apoptosis by decreasing the mRNA and protein expression levels of inhibition of B-cell lymphoma 2 (Bcl2). However, under our experimental conditions, no autophagic changes in rat OGCs were observed, and the mRNA and protein expression levels of the autophagic markers microtubule-associated protein 1 light chain 3 alpha (Map1lc3b) and Beclin1 (Becn1) were not changed. Microarray chip analysis, miRNA screening, and bioinformatics approaches were used to further explore the roles of apoptosis regulation-related miRNAs. In total, 19 miRNAs putatively related to Cd-induced apoptosis in rat OGCs were identified. Notably, miR-204-5p, which may target Bcl2, was identified. Then, rat OGCs were cultured in vitro and used to construct the miR-204-5p-knockdown cell line LV2-short hairpin RNA (shRNA). LV2-shRNA cells were exposed to 20 μM Cd for 12 h, and the mRNA and protein expression levels of Bcl2 were increased. Our findings suggest that Cd is cytotoxic to rat OGCs, and mitochondrial apoptosis rather than autophagy mediates Cd-induced damage to OGCs. Cd also affects apoptosis-related miRNAs, and the underlying apoptotic mechanism may involve the Bcl2 gene.


Author(s):  
Ravi, P.S.P. Gupta, S. Nandi, S. Mondal, Kumar Soni­ ◽  
P.S.P. Gupta ◽  
S. Nandi ◽  
S. Mondal, J.R. Ippala, Avantika Mor, A Mondal ◽  
J.R. Ippala ◽  
...  

The study was conducted by supplementing cupric chloride dihydrate to modulate the estradiol synthesis in granulosa cells with a hypothesis of possible use of copper to potentiate or partially replace the hormones for estrus induction / estrus synchronization in future studies. In present study copper at three doses (0.1, 0.5 and 1 mM level in culture medium) were tested to deserve see their effects on in vitro granulosa cell survival, estradiol synthesis and their associated genes of ovarian granulosa cells of goat.There was no effect of copper on the ovarian granulosa cell survival rate. There was a considerable increase in the estradiol level per ml culture medium basis by 6th day of in vitro culture with the second dose of copper i.e. 0.5 mM, but the increase was non-significant (P greator than 0.05). There was no significant effect of copper on estradiol synthesis when expressed on per 30000 cell basis. Effect of copper (0.1 mM and 0.5 mM) on the mRNA expression of genes of aromatase (CYP19A1) and cyclin D2 (CCND2) was estimated. Copper had significantly (P less than 0.05) increased the mRNA expression of CCND2 and CYP19A1in ovarian granulosa cells with only one of the two doses tested i.e. 0.5 mM. Hence, copper can be considered as a potential mineral to supplement along with hormones in estrus induction or estrus synchronization protocols to minimize the use of hormones.


Sign in / Sign up

Export Citation Format

Share Document