scholarly journals Intracrine Role of Progesterone in Fibronectin Production and Deposition by Chicken Ovarian Granulosa Cells in Vitro: Effect of Extracellular Calcium1

1995 ◽  
Vol 52 (3) ◽  
pp. 683-689 ◽  
Author(s):  
Michael D. Conkright ◽  
Elikplimi K. Asem
1992 ◽  
Vol 127 (5) ◽  
pp. 466-470 ◽  
Author(s):  
Elikplimi K Asem ◽  
Jacqueline A Carnegie ◽  
Benjamin K Tsang

In vitro studies were conducted to investigate the role of chicken ovarian granulosa cells in the production of fibronectin, a component of the basal lamina of ovarian follicles. Collagenase dispersed granulosa cells obtained from the first (F1; about 35 mm in diameter) and third (F3; 15–20 mm in diameter) largest preovulatory follicles, as well as from a pool of small yellow follicles (SF; 6–10 mm in diameter), were incubated in serum-free medium-199 for 24 to 96 h in the absence and presence of luteinizing hormone (LH) or forskolin. Fibronectin secreted in the medium was quantitated by enzyme linked immunosorbent assay. Basal fibronectin production (which increased with the duration of incubation) was significantly greater (p<0.001) in granulosa cells derived from mature follicle (F1) than in F3 or SF cells. Both LH and forskolin stimulated fibronectin production in SF and F3 cells in a dose-dependent manner; however, they were without effect in F1 cells. The magnitude of increase in fibronectin production elicited by LH or forskolin was greater in SF cells than in F3 cells. The cytoplasm of cultured granulosa cells taken at all stages of follicular development stained positively for fibronectin. These findings indicate that chicken granulosa cells produce fibronectin. This ability is acquired early in follicular development and the stimulatory effect of the gonadotropin (LH) diminished as the follicle approached ovulation.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1418 ◽  
Author(s):  
Malgorzata Jozkowiak ◽  
Greg Hutchings ◽  
Maurycy Jankowski ◽  
Katarzyna Kulcenty ◽  
Paul Mozdziak ◽  
...  

Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.


2020 ◽  
Author(s):  
Peihui Ding ◽  
Ding-Ding Ai ◽  
Kai-Xue Lao ◽  
Ying Huang ◽  
Yan Zhang ◽  
...  

Abstract Background Polycystic ovary syndrome is a complex disease related to the endocrine and metabolism. Its specific cause and pathogenesis have not been clear. Nesfatin-1 could not only regulate energy balance and glucose metabolism, but also affect the reproductive system. The Wnt/β-catenin signaling pathway affects follicle development, ovulation, corpus luteum formation, and steroid hormone production. Results Here, we studied the roles of nesfatin-1 and Wnt/β-catenin signaling pathway in the pathogenesis of polycystic ovary syndrome. Firstly, the human primary ovarian granulosa cells in vitro was cultured. The results showed that the apoptosis rate of ovarian granulosa cells in polycystic ovary syndrome patients was significantly higher than that of granular cells in normal people. Moreover, nesfatin-1 and Wnt/β-catenin pathway inhibitor IWR-1could inhibit the expressions of ovarian granulosa cells apoptosis genes and promote their proliferation, as well as nesfatin-1 affected the expressions of foxo3a and its downstream factors. Then, an in vitro culture system for ovarian granulosa cells (OGCs) was established by employing a rat model. The results are the same with those mentioned above. Conclusion This strongly proves that the nesfatin-1 participates in regulating the apoptosis and proliferation of granulosa cells by the Wnt/β-catenin pathway. According to the role of nesfatin-1 and IWR in polycystic ovary syndrome, nesfatin-1 and Wnt/β-catenin pathway can provide a guideline for the diagnosis and treatment of Polycystic ovary syndrome (PCOS).


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 493
Author(s):  
 Chung-Yu Chen ◽  
Chien-Rung Chen ◽  
Chiao-Nan Chen ◽  
Paulus S. Wang ◽  
Toby Mündel ◽  
...  

The purpose of this study is to evaluate the amphetamine effects on progesterone and estradiol production in rat granulosa cells and the underlying cellular regulatory mechanisms. Freshly dispersed rat granulosa cells were cultured with various test drugs in the presence of amphetamine, and the estradiol/progesterone production and the cytosolic cAMP level were measured. Additionally, the cytosolic-free Ca2+ concentrations ([Ca2+]i) were measured to examine the role of Ca2+ influx in the presence of amphetamine. Amphetamine in vitro inhibited both basal and porcine follicle-stimulating hormone-stimulated estradiol/progesterone release, and amphetamine significantly decreased steroidogenic enzyme activities. Adding 8-Bromo-cAMP did not recover the inhibitory effects of amphetamine on progesterone and estradiol release. H89 significantly decreased progesterone and estradiol basal release but failed to enhance a further amphetamine inhibitory effect. Amphetamine was capable of further suppressing the release of estradiol release under the presence of nifedipine. Pretreatment with the amphetamine for 2 h decreased the basal [Ca2+]i and prostaglandin F2α-stimulated increase of [Ca2+]i. Amphetamine inhibits progesterone and estradiol secretion in rat granulosa cells through a mechanism involving decreased PKA-downstream steroidogenic enzyme activity and L-type Ca2+ channels. Our current findings show that it is necessary to study the possibility of amphetamine perturbing reproduction in females.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Jennifer L Juengel ◽  
Lisa J Haydon ◽  
Brigitta Mester ◽  
Brian P Thomson ◽  
Michael Beaumont ◽  
...  

IGFs are known to be key regulators of ovarian follicular growth in eutherian mammals, but little is known regarding their role in marsupials. To better understand the potential role of IGFs in the regulation of follicular growth in marsupials, expression of mRNAs encoding IGF1, IGF2, IGF1R, IGF-binding protein 2 (IGFBP2), IGFBP4 and IGFBP5 was localized by in situ hybridization in developing ovarian follicles of the brushtail possum. In addition, the effects of IGF1 and IGF2 on granulosa cell function were tested in vitro. Both granulosa and theca cells synthesize IGF mRNAs, with the theca expressing IGF1 mRNA and granulosa cell expressing IGF2 mRNA. Oocytes and granulosa cells express IGF1R. Granulosa and theca cells expressed IGFBP mRNAs, although the pattern of expression differed between the BPs. IGFBP5 mRNA was differentially expressed as the follicles developed with granulosa cells of antral follicles no longer expressing IGFBP5 mRNA, suggesting an increased IGF bioavailability in the antral follicle. The IGFBP protease, PAPPA mRNA, was also expressed in granulosa cells of growing follicles. Both IGF1 and IGF2 stimulated thymidine incorporation but had no effect on progesterone production. Thus, IGF may be an important regulator of ovarian follicular development in marsupials as has been shown in eutherian mammals.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1770
Author(s):  
Guohua Song ◽  
Yixuan Jiang ◽  
Yaling Wang ◽  
Mingkun Song ◽  
Xuanmin Niu ◽  
...  

Cathepsin S (CTSS) is a member of cysteine protease family. Although many studies have demonstrated the vital role of CTSS in many physiological and pathological processes including tumor growth, angiogenesis and metastasis, the function of CTSS in the development of rabbit granulosa cells (GCS) remains unknown. To address this question, we isolated rabbit GCS and explored the regulatory function of the CTSS gene in cell proliferation and apoptosis. CTSS overexpression significantly promoted the secretion of progesterone (P4) and estrogen (E2) by increasing the expression of STAR and CYP19A1 (p < 0.05). We also found that overexpression of CTSS increased GCS proliferation by up-regulating the expression of proliferation related gene (PCNA) and anti-apoptotic gene (BCL2). Cell apoptosis was markedly decreased by CTSS activation (p < 0.05). In contrast, CTSS knockdown significantly decreased the secretion of P4 and E2 and the proliferation of rabbit GCS, while increasing the apoptosis of rabbit GCS. Taken together, our results highlight the important role of CTSS in regulating hormone secretion, cell proliferation, and apoptosis in rabbit GCS. These results might provide a basis for better understanding the molecular mechanism of rabbit reproduction.


2004 ◽  
Vol 82 (1) ◽  
pp. 57-64 ◽  
Author(s):  
I fan Kuo ◽  
Jie Chen ◽  
Thomas K.H Chang

The present study investigated the in vitro effect of Ginkgo biloba extracts and some of the individual constituents (ginkgolides, bilobalide, and flavonols such as kaempferol, quercetin, isorhamnetin, and their glycosides) on CYP1A-mediated 7-ethoxyresorufin O-dealkylation in hepatic microsomes isolated from rats induced with β-naphthoflavone. G. biloba extract competitively inhibited CYP1A activity, with an apparent Ki value of 1.6 ± 0.4 µg/mL (mean ± SE). At the concentrations present in the G. biloba extracts, ginkgolides A, B, C, and J and bilobalide did not affect CYP1A activity, whereas kaempferol (IC50 = 0.006 ± 0.001 µg/mL, mean ± SE), isorhamnetin (0.007 ± 0.001 µg/mL), and quercetin (0.050 ± 0.003 µg/mL) decreased this activity. The monoglycosides (1 and 10 µg/mL) and diglycosides (10 µg/mL) of kaempferol and quercetin but not those of isorhamnetin also inhibited CYP1A activity. The order of inhibitory potency was kaempferol ~ isorhamnetin > quercetin, and for each of these flavonols the order of potency was aglycone >> monoglycoside > diglycoside. In summary, G. biloba extract competitively inhibited rat hepatic microsomal CYP1A activity, but the effect was not due to ginkgolides A, B, C, or J, bilobalide, kaempferol, quercetin, isorhamnetin, or the respective flavonol monoglycosides or diglycosides.Key words: bilobalide, CYP1A, cytochrome P450, Ginkgo biloba, ginkgolide, flavonol.


Sign in / Sign up

Export Citation Format

Share Document