scholarly journals Long-term observations of Alaska Coastal Current in the northern Gulf of Alaska

Author(s):  
Phyllis J. Stabeno ◽  
Shaun Bell ◽  
Wei Cheng ◽  
Seth Danielson ◽  
Nancy B. Kachel ◽  
...  
2021 ◽  
Author(s):  
Yu-Kai Chen ◽  
Chia-Yi Pan ◽  
Yi-Chen Wang ◽  
Hsiu-Ju Tseng ◽  
Bo-Kun Su ◽  
...  

AbstractIn this study, the interannual variations of ichthyoplankton assemblages in the Taiwan Strait (TS) during the winters of 2007–2013 were determined. The cold China Coastal Current (CCC) and Mixed China Coastal Water (MCCW) intruded into the TS and impinged with the warm Kuroshio Branch Current (KBC) with annual variations. Consequently, the ichthyoplankton community in the TS was mainly structured into two assemblages characterized by differing environmental conditions. The composition of the warm KBC assemblage was relatively stable and was characterized by Diaphus B and Bregmaceros spp. By contrast, the cold MCCW assemblage demonstrated considerable variations over the years, with demersal Gobiidae and Scorpaenidae families considered the most representative. In addition, Benthosema pterotum and Trichiurus spp. were common in both KBC and MCCW assemblages. The distribution of the KBC assemblage demonstrated sharp boundaries in the frontal zones, whereas changes in the assemblage structure between the frontal zones were gradual for the MCCW assemblage, particularly when demersal taxa were dominant. Sea surface temperature and salinity were most strongly associated with variability in the assemblage structure during the study period. Thus, this paper provides a better understanding of long-term larval fish dynamics during winter in the TS.


Author(s):  
James R. Payne ◽  
William B. Driskell ◽  
David Janka ◽  
Lisa Ka'aihue ◽  
Joe Banta ◽  
...  

ABSTRACT Following the 1989 Exxon Valdez oil spill (EVOS), the Prince William Sound Regional Citizens' Advisory Council began the Long-Term Environmental Monitoring Program (LTEMP) in 1993 to track oil hydrocarbon chemistry of recovering sediments and mussel tissues along the path of the spill in Prince William Sound (PWS) and across the Northern Gulf of Alaska (NGOA) region. The program also samples sites near the Alyeska Marine Terminal (AMT) within Port Valdez, primarily to monitor tanker operations and the resulting treatment and discharge of oil-contaminated tanker ballast water. Over the last 28 years, the program has documented EVOS oil's disappearance at the spill-impacted sites (albeit buried oil still exists at a few unique sheltered locations in PWS). Within the Port, a few tanker- and diesel-spill incidents have been documented over the years, but all were minor and with recovery times of < 1 yr. Of highest concern has been the permitted chronic release of weathered oil from tankers' ballast-water that is treated and discharged at the Alyeska Marine Terminal (AMT). In earlier years (1980s–90s), with discharge volumes reaching 17–18 MGD, up to a barrel of finely dispersed weathered oil would be released into the fjord daily. Over the last two decades, total petrogenic inputs (TPAH43) into the Port have declined as measured in the monitored mussels and sediments. This trend reflects a combination of decreased Alaska North Slope (ANS) oil production and thus, less tanker traffic, plus less ballast from the transition to double-hulled tankers with segregated ballast tanks, and improved treatment-facility efficiency in removing PAH. From the 2018 collections, mussel-tissue hydrocarbon concentrations from all eleven LTEMP stations (within Port Valdez as well as PWS and NGOA regions) were below method detection limits and similar to laboratory blanks (TPAH43 < 44 ng/g dry wt.). At these low background levels, elevated TPAH values from a minor 2020 spill incident at the Terminal were easily detected at all three Port Valdez stations.


2017 ◽  
Vol 13 (8) ◽  
pp. 1007-1022 ◽  
Author(s):  
Rob Wilson ◽  
Rosanne D'Arrigo ◽  
Laia Andreu-Hayles ◽  
Rose Oelkers ◽  
Greg Wiles ◽  
...  

Abstract. Ring-width (RW) records from the Gulf of Alaska (GOA) have yielded a valuable long-term perspective for North Pacific changes on decadal to longer timescales in prior studies but contain a broad winter to late summer seasonal climate response. Similar to the highly climate-sensitive maximum latewood density (MXD) proxy, the blue intensity (BI) parameter has recently been shown to correlate well with year-to-year warm-season temperatures for a number of sites at northern latitudes. Since BI records are much less labour intensive and expensive to generate than MXD, such data hold great potential value for future tree-ring studies in the GOA and other regions in mid- to high latitudes. Here we explore the potential for improving tree-ring-based reconstructions using combinations of RW- and BI-related parameters (latewood BI and delta BI) from an experimental subset of samples at eight mountain hemlock (Tsuga mertensiana) sites along the GOA. This is the first study for the hemlock genus using BI data. We find that using either inverted latewood BI (LWBinv) or delta BI (DB) can improve the amount of explained temperature variance by > 10 % compared to RW alone, although the optimal target season shrinks to June–September, which may have implications for studying ocean–atmosphere variability in the region. One challenge in building these BI records is that resin extraction did not remove colour differences between the heartwood and sapwood; thus, long term trend biases, expressed as relatively warm temperatures in the 18th century, were noted when using the LWBinv data. Using DB appeared to overcome these trend biases, resulting in a reconstruction expressing 18th–19th century temperatures ca. 0.5 °C cooler than the 20th–21st centuries. This cool period agrees well with previous dendroclimatic studies and the glacial advance record in the region. Continuing BI measurement in the GOA region must focus on sampling and measuring more trees per site (> 20) and compiling more sites to overcome site-specific factors affecting climate response and using subfossil material to extend the record. Although LWBinv captures the inter-annual climate signal more strongly than DB, DB appears to better capture long-term secular trends that agree with other proxy archives in the region. Great care is needed, however, when implementing different detrending options and more experimentation is necessary to assess the utility of DB for different conifer species around the Northern Hemisphere.


1994 ◽  
Vol 14 (7-8) ◽  
pp. 831-845 ◽  
Author(s):  
Z. Kowalik ◽  
J.L. Luick ◽  
T.C. Royer

2019 ◽  
Vol 170 ◽  
pp. 134-145 ◽  
Author(s):  
Kristin N. Marshall ◽  
Janet T. Duffy-Anderson ◽  
Eric J. Ward ◽  
Sean C. Anderson ◽  
Mary E. Hunsicker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document