scholarly journals Methane seepage effects on biodiversity and biological traits of macrofauna inhabiting authigenic carbonates

Author(s):  
Lisa A. Levin ◽  
Guillermo F. Mendoza ◽  
Benjamin M. Grupe
Ecosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Olívia S. Pereira ◽  
Jennifer Gonzalez ◽  
Guillermo F. Mendoza ◽  
Jennifer Le ◽  
Connor L. Coscino ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
F. Badesab ◽  
P. Dewangan ◽  
V. Gaikwad

Diagenetically formed magnetic minerals at marine methane seep sites are potential archive of past fluid flow and could provide important constraints on the evolution of past methane seepage dynamics and gas hydrate formation over geologic time. In this study, we carried out integrated rock magnetic, and mineralogical analyses, supported by electron microscope observations, on a seep impacted sediment core to unravel the linkage between greigite magnetism, methane seepage dynamics, and evolution of shallow gas hydrate system in the K-G basin. Three sediment magnetic zones (MZ-1, MZ-2, and MZ-3) have been identified based on the down-core variations in rock magnetic properties. Two events of intense methane seepage are identified. Repeated occurences of authigenic carbonates throughout the core indicate the episodic intensification of anaerobic oxidation of methane (AOM) at the studied site. Marked depletion in magnetic susceptibility manifested by the presence of chemosynthetic shells (Calyptogena Sp.), methane-derived authigenic carbonates, and abundant pyrite grains provide evidences on intense methane seepage events at this site. Fracture-controlled fluid transport supported the formation of gas hydrates (distributed and massive) at this site. Three greigite bearing sediment intervals (G1, G2, G3) within the magnetically depleted zone (MZ-2) are probably the paleo-gas hydrate (distributed-type vein filling) intervals. A strong linkage among clay content, formation of veined hydrate deposits, precipitation of authigenic carbonates and greigite preservation is evident. Hydrate crystallizes within faults/fractures formed as the methane gas migrates through the gas hydrate stability zone (GHSZ). Formation of authigenic carbonate layers coupled with clay deposits restricted the upward migrating methane, which led to the formation of distributed-type vein filling hydrate deposits. A closed system created by veined hydrates trapped the sulfide and limited its availability thereby, causing arrestation of pyritization and favored the formation and preservation of greigite in G1, G2, G3.


2020 ◽  
Vol 82 (1) ◽  
pp. 22-32
Author(s):  
I.L. Garmasheva ◽  
◽  
N.K. Kovalenko ◽  
L.T. Oleschenko ◽  
◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Misbah Razzaq ◽  
Maria Jesus Iglesias ◽  
Manal Ibrahim-Kosta ◽  
Louisa Goumidi ◽  
Omar Soukarieh ◽  
...  

AbstractVenous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10–7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.


Sign in / Sign up

Export Citation Format

Share Document