North-East monsoon rainfall extremes over the southern peninsular India and their association with El Niño

2017 ◽  
Vol 80 ◽  
pp. 1-11 ◽  
Author(s):  
Prem Singh ◽  
C. Gnanaseelan ◽  
J.S. Chowdary
2020 ◽  
Author(s):  
Shipra Jain ◽  
Adam A Scaife ◽  
Nick Dunstone ◽  
Doug Smith ◽  
Saroj K Mishra ◽  
...  

<p>India suffers from severe social-economic losses due to floods and droughts during boreal summer (June-September) and therefore there is a growing interest in the current risk of extreme monsoon rainfall. In this analysis, we estimate the risk of flood, drought and unprecedented (outside the range of present observational record) rainfall over India using UNprecedented Simulated Extremes using ENsembles (UNSEEN) method. The UNSEEN is a statistical framework under which the risk of unprecedented rainfall extremes can be estimated using a large ensemble of initialized climate simulations to sample a broad range of internal variability. This is the first application of the method to the hindcasts from multiple coupled atmosphere-ocean models. Under this method, we first test individual models against the observed rainfall record over India and select models that are statistically indistinguishable from observations. The risk of floods, droughts and unprecedented rainfall is then estimated using a large ensemble of summer precipitation simulated by the selected set of models. We note that in present climate the risk of drought is higher than the flood, with droughts being more frequent and intense than the floods. This asymmetry in rainfall extremes is found to be partly due to the asymmetry in El-Nino Southern Oscillation (ENSO) phase, with El Nino reaching higher magnitude more frequently than La Nina. The current risk of record breaking drought (>23% deficit w.r.t climatological mean) is 1.6% whereas the risk for record-breaking flood (>16% excess) is 2.6%. There is even a risk of 30% rainfall deficit that could occur around once in two centuries, which is not yet seen in observations and would have a catastrophic influence on India.</p>


2006 ◽  
Vol 19 (8) ◽  
pp. 1567-1575 ◽  
Author(s):  
Lareef Zubair ◽  
C. F. Ropelewski

Abstract Recently, it was reported that the relationship of the Indian southwest monsoon rainfall with El Niño–Southern Oscillation (ENSO) has weakened since around 1980. Here, it is reported that in contrast, the relationship between ENSO and the northeast monsoon (NEM) in south peninsular India and Sri Lanka from October to December has not weakened. The mean circulation associated with ENSO over this region during October to December does not show the weakening evident in the summer and indeed is modestly intensified so as to augment convection. The intensification of the ENSO–NEM rainfall relationship is modest and within the historical record but stands in contrast to the weakening relationship in summer. The intensification of the circulation is consistent with the warming of surface temperatures over the tropical Indian Ocean in recent decades. There is modestly intensified convection over the Indian Ocean, strengthening of the circulation associated with ENSO (Walker circulation), and enhanced rainfall during El Niño episodes in a manner consistent with an augmented ENSO–NEM relationship.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Thang Van Vu ◽  
Hieu Trong Nguyen ◽  
Thang Van Nguyen ◽  
Hiep Van Nguyen ◽  
Huong Thi Thanh Pham ◽  
...  

28 years (1980–2007) of station and gridded reanalysis data were used to investigate the effects of El Niño/Southern Oscillation (ENSO) on autumn rainfall in the Extended Central Vietnam (ECV) region. Results show that, under El Niño conditions, autumn rainfall in Central Vietnam is reduced by about 10 to 30%. This reduction seems to be caused by a weakening of the North East monsoon circulation, which appears to be linked to an anomalous anticyclonic vortex and a positive sea level pressure anomaly over the East Sea. In addition, the disappearance of a secondary moisture source over the southern region of the East Sea also favors the reduction in rainfall over this region. Conversely, during La Niña, the total autumn rainfall in the ECV region increases by about 9 to 19%. The strengthening of the North East monsoon, with a cyclonic wind anomaly over the East Sea, helps to increase the moisture supply to the area by about 10 to 20%, resulting in enhanced rainfall in the ECV. It is also found that the La Niña conditions do not only cause an increase in rainfall, but also change the temporal distribution of the monthly rainfall over the region, with more rainfall in the latter months of the year.


2012 ◽  
Vol 33 (16) ◽  
pp. 5268-5288 ◽  
Author(s):  
Kyung-Ae Park ◽  
Uudus Bayarsaikhan ◽  
Kyung-Ryul Kim

2005 ◽  
Vol 18 (11) ◽  
pp. 1697-1708 ◽  
Author(s):  
Nkrintra Singhrattna ◽  
Balaji Rajagopalan ◽  
K. Krishna Kumar ◽  
Martyn Clark

Abstract Summer monsoon rains are a critical factor in Thailand’s water resources and agricultural planning and management. In fact, they have a significant impact on the country’s economic health. Consequently, understanding the variability of the summer monsoon rains over Thailand is important for instituting effective mitigating strategies against extreme rainfall fluctuations. To this end, the authors systematically investigated the relationships between summer monsoon precipitation from the central and northern regions of Thailand and large-scale climate features. It was found that Pacific sea surface temperatures (SSTs), in particular, El Niño–Southern Oscillation (ENSO), have a negative relationship with the summer monsoon rainfall over Thailand in recent decades. However, the relationship between summer rainfall and ENSO was weak prior to 1980. It is hypothesized that the ENSO teleconnection depends on the SST configuration in the tropical Pacific Ocean, that is, an eastern Pacific–based El Niño pattern, such as is the case in most of the post-1980 El Niño events, tends to place the descending limb of the Walker circulation over the Thailand–Indonesian region, thereby significantly reducing convection and consequently, rainfall over Thailand. It is believed that this recent shift in the Walker circulation is instrumental for the nonstationarity in ENSO–monsoon relationships in Thailand. El Niños of 1997 and 2002 corroborate this hypothesis. This has implications for monsoon rainfall forecasting and, consequently, for resources planning and management.


Sign in / Sign up

Export Citation Format

Share Document